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Abstract.  A finite-element model, CON2D, has been developed to simulate temperature, stress, 
and shape development during the continuous casting of steel, both in and below the mold.  The 
stress model features an elastic-viscoplastic creep constitutive equation that accounts for the 
different responses of the liquid, semi-solid, delta-ferrite, and austenite phases.  Temperature and 
composition-dependent functions are also employed for properties such as thermal linear expansion.  
A contact algorithm is developed to prevent penetration of the shell into the mold wall due to the 
internal liquid pressure.  An efficient two-step algorithm has been developed to integrate these 
highly non-linear equations.  An inelastic strain damage criterion is developed to predict hot tear 
crack formation, which includes the contribution of pseudo-strain due to the flow of the liquid 
during feeding of the mushy zone.  The model is validated with an analytical solution for both 
temperature and stress in a solidifying slab.  It is then applied to predict the maximum casting speed 
to avoid crack formation due to bulging below the mold during casting of steel billets.   

Introduction 

Computational models are important tools to study the complex process of continuous casting of 
steel.  They can help to understand how defects form and to optimize casting conditions to 
maximize quality and productivity at low cost.  Brimacombe and coworkers applied both heat flow 
[1] and stress models [2] to study crack formation in slabs.  Kristiansson [3] applied a thermal stress 
model of square billets that featured time-dependent plasticity.  Recently, Fachinotti et. al. 
developed a mixed Eulerian-Lagrangian [4] thermal mechanical model to study round steel billets. 

A thermal-mechanical finite element model, CON2D, has been developed at the University of 
Illinois over the past decade [5, 6].  This paper summarizes the features of this model and describes 
one of its recent applications: prediction of the maximum casting speed to avoid crack formation 
due to bulging below the mold during continuous casting of square billets.  

Heat Transfer and Solidification Model   

The model solves a 2D finite-element discretization of the transient heat conduction equation in a 
Lagrangian reference frame that moves down through the caster with the solidifying steel shell.  The 
nonlinear enthalpy gradients that accompany latent heat evolution were handled using a spatial 
averaging method by Lemon [7].  It adopts a three-level time-stepping method by Dupont [8]. 

Stress Model   

The force equilibrium, constitutive, and strain displacement equations in this 2-D slice through the 
shell are solved under a condition of generalized plane strain in the casting direction [5].   
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The total strain increment, {∆ε}, is composed of elastic, {∆εe}, thermal, {∆εth}, inelastic strain, 
{∆εin}, and flow strain, {∆εflow}, components.  Thermal strain due to volume changes caused by 
both temperature differences and phase transformations is calculated from the thermal linear 
expansion (TLE) of the material, which is based on density measurements. 

{ } ( ){ } 3
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T

th TLE T TLE T where TLE T T Tε ρ ρ= − = −  (1) 

A unified constitutive model is used here to capture the temperature- and strain-rate sensitivity of 
high temperature steel.  The instantaneous equivalent inelastic strain rate inε  is adopted as the scalar 

state function, which depends on the current equivalent stress, σ , temperature, T , the current 
equivalent inelastic strain, inε , which accumulates below the solidus temperature, and carbon 

content of the steel.  When the steel is mainly austenite phase, (%γ >90%), Model III by Kozlowski 
[9] was applied.  This function matches tensile test measurements of Wray [10] and creep test data 
of Suzuki [11].  When the steel contains significant amounts of soft delta-ferrite phase (%δ >10%), 
a power-law model is used, which matches measurements of Wray above 1400 oC [12].  Fig. 1 
shows the accuracy of the constitutive model predictions compared with stresses measured by Wray 
[13] at 5% strain at different strain rates and temperatures.  This figure also shows the higher 
relative strength of austenite, which is important for stress development in the solidifying shell 
discussed later.  The standard von Mises loading surface, associated plasticity and normality 
hypotheses in the Prandtl-Reuss flow law is applied to model isotropic hardening of these plain 
carbon steels [14]. 

As a fixed-grid approach is employed, liquid elements are generally given no special treatment 
regarding material properties or finite element assembly. To enforce negligible shear stress in the 
liquid, the following constitutive equation is used to provide an extremely rapid creep strain rate in 
every element containing any liquid, (ie., solidusT T> ).   
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 (2) 

The same Prandtl-Reuss relation used for the solid is 
adopted to expand this scalar strain rate to its multi-
dimensional vector.  This fixed-grid approach avoids 
difficulties of adaptive meshing and allows strain to 
accumulate in the mushy region, which is important for 
the prediction of hot tear cracks.  As in the real system, the 
total mass of the liquid domain is not constant, and the 
inelastic strain accumulated in the liquid region represents 
mass transport due to fluid flow in and out of the domain, 
so is denoted as "flow strain".  Positive flow strain 
indicates fluid feeding into the simulated region. 

 
Finite Element Implementation.  Applying the standard 
Galerkin’s method to the governing equations gives the 
linear algebraic equations to solve for temperature and 
then displacement within each time step.  The stress model  
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Figure 1: Comparison of predicted 

and measured stress [13] 
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uses 6-node quadratic-displacement triangle elements, which were each divided into four 3-node 
linear-temperature elements for the heat transfer calculation.  The stress calculation involves force 
vectors due to increments of thermal and inelastic strain, ferrostatic pressure and shell/mold 
interaction at certain internal boundaries, and elastic strain corrections from the previous time step. 

[ ] { } { } { } { } { }
th pl

t tt t t tt t t t

fp elK u F F F Fε ε

+∆+∆ +∆+∆ +∆∆ = ∆ + ∆ + +  (3) 

Integration of the Constitutive Model.  The highly strain-rate-dependent constitutive models 
involved in this solidification problem require a robust numerical integration technique to avoid 
numerical difficulties.  This work applies a “local-global” method that alternates in each time step 
between implicit time integration of the constitutive equations to accurately estimate the future 
stress at each Gauss point, followed by standard finite element spatial integration.  Specifically, the 
integration procedure used within each time step is summarized as: 

1. Estimate { }ε̂∆  based on { }u∆  from the previous time step:{ } [ ] { }ˆ t
B uε∆ = ∆ . 

2. Calculate { }* t t
σ

+∆
 , *σ  and { }* '

t t
σ

+∆
, needed to define the direction of the stress vector. 
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3. Solve the following two ordinary differential equations simultaneously for t t
inε +∆  and ˆ t t+∆σ  at 

each local Gauss point, using a fully implicit bounded Newton-Raphson integration method from 
Lush [15].  This method gives the best robustness and efficiency of several alternative approaches 
evaluated [6].  Function F is either Kozlowski model III for γ, the power law for δ, or flow strain for 
liquid phase. 
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4. Expand this scalar stress estimate into vector form1: { } { }
*
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5. Calculate t t
inε +∆  from ˆ t t+∆σ and t t

in
+∆ε using F according to the material phase.  

6. Expand this scalar inelastic strain estimate into a vector { } t t

inε +∆
with the same direction as 

{ }ˆ '
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using Prandtl-Reuss eqs.; Update { } { } { }t t t t t
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7. Use classic FEM spatial integration to solve Eq. 6 for { } t t
u
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.   
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Ferrostatic Pressure.  Ferrostatic pressure due to gravity acting on the internal liquid pool, 

pF gzρ= , is applied as an internal boundary condition. Each three-node element containing exactly 

two nodes just below the solidus temperature is subjected to a load pushing toward the mold wall. 
 
Mold Wall Constraint.  The mold wall provides support to the solidifying shell before it reaches 
the mold exit.  A proper mold wall constraint is needed to prevent the solidifying shell from 
penetrating the mold wall, but allowing the shell to shrink freely.  The present method developed by 
Moitra [5, 16] is based on penalty method.  It allows the shell deform freely at the beginning of each 
step and repeatedly constraint half of the penetrating nodes until no penetration occur.  
Failure Criterion.  A simple empirical critical strain function, εc, fitted by Won [17] from many 
measurements, was adopted in this work as a fracture criterion given in Eq. 6.  Hot tear cracks form 
if the thick dendrites in the brittle temperature range, ∆TB [17], prevent the surrounding liquid to 
compensate the contraction of interdendritic liquid and solid expansion.  Cracks are predicted when 
damage strain, εdamage, exceeds the critical strain, εc.  
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Damage strain is defined as the flow strain accumulated within the brittle temperature range, 
calculated during the post-processing phase. The damage strain component chosen for comparison 
is taken perpendicular to the dendrite growth direction, which is along the “hoop” direction, so 
named because it is tangential to the surface of the solidifying shell.   

Model Validation 

An analytical solution of 
thermal stresses in an 
unconstrained solidifying 
plate developed by Weiner 
and Boley  [18] is used as a 
validation problem for this 
solidification stress model. 
The elastic-perfectly-plastic 
constitutive equation used in 
this solution was transformed 
to a numerically challenging 
problem of the form in Eq. 2
and computed by CON2D. 

Figs. 2 and 3 show the 
analytical solutions computed 
with MATLAB [19]. The 
CON2D results match within 
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2% average error with the same mesh and time step sizes used in the actual 2-D analyses in Table 2.  
This demonstrates that the model is numerically consistent and has an acceptable mesh. 
 
Table 1: Material Details in Billet Analysis Table 2: Simulation Conditions 
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Steel Composition 
(wt%) 

0.27C, 1.52Mn, 
0.34Si, 0.015S, 
0.012P 

Liquidus Temp. (oC) 1500.72 
70% Solid Temp. (oC) 1477.02 
90% Solid Temp. (oC) 1459.90 
Solidus Temp. (oC) 1411.79  

Billet Section Size (mm×mm) 120×120 
Total Mold Length (mm) 800 
Mesh Size (mm×mm) 0.1×0.1~1.4×1.0 
Number of Nodes  7381 
Number of Elements  7200 
Time Step Size (sec.) 0.001 - 0.5 
Pouring Temperature (oC) 1540.0  

Application to Thermal Mechanical Behavior of Continuous-Cast Billet 

The finite-element thermal-mechanical model is next applied to predict temperature, bulging, strain, 
stress and fracture in continuous cast steel billets, in the absence of any sub-mould support.  The 
results are then used to find the critical casting speeds to avoid quality problems related to bulging 
below the mold. 

 
Modeling Domain.  The model domain is a L-shaped region in one 
quarter of a transverse section through the billet, as shown in Fig. 4. 
Assuming two-fold symmetry and taking out the center portion of 
the section, which is always liquid, saves computational cost. 

 
Heat Flux at Shell Surface.  The instantaneous heat flux, given in 
Eq. 7, is based on fitting many plant measurements [20].  It is 
assumed to be uniform around the perimeter of the billet surface in 
order to simulate ideal taper and perfect contact between the shell 
and mold.  After the billet leaves the mold, its surface temperature 
is kept unchanged from its circumferential profile at mold exit. This 
eliminates the effect of spray cooling practice on sub-mold 
reheating or cooling and the associated complication for the 
stress/strain development.  Transformation temperatures defining 
the phase evolution of the typical plain carbon steel studied here are 
given in Table 1.   

 

Figure 4: Modeling Domain 
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Simulation Results.  The model is used to simulate the mechanical behavior of a steel billet under 
the conditions shown in Table 2 with various casting speeds.   

Figs. 5(a) and 6(a) show the distorted temperature contours at 200mm below the mold exit for 
the important casting speeds of 2.2m/min and 5.0m/min, respectively.  The first speed is a typical 
casting speed, while the second speed is the critical speed at which hot tear crack failure of the shell 
is just predicted to occur.  The shell is hotter and thinner at the higher casting speed, owing to less 
time in the mold.  This thinner, hotter, and weaker shell then bulges more under the ferrostatic 
pressure below the mold. 

Figs. 5(b) and 6(b) show contours of hoop values of stress constructed by taking components in 
the x direction across the dendrites in the horizontal portion of the domain and the y direction in the 
vertical portion.  High values appear at the off-corner sub-surface region, due to a hinging effect that 
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the ferrostatic pressure over the entire face exerts around the corner.  This bends the shell around the 
corner and generates high subsurface tensile stress at the weak solidification front in the off-corner 
subsurface location.  This tensile stress increases at higher casting speed.  There is no obvious high 
stress region at the low casting speed.  Surface hoop stress is compressive at low casting speed.  
This indicates no possibility of surface cracking.  However, tensile surface hoop stress is generated 
below the mold at high speed in Fig. 6(b) at the face center due to excessive bulging.  This tensile 
stress and strain might contribute to surface longitudinal corner cracks. 

Figs. 5(c) and 6(c) show contours of damage strain accumulated according to Eq. 6.  The highest 
values of damage strain appear at the off-corner sub-surface region in the hoop direction. Moreover, 
significantly higher values are found for the higher casting speed case. At 5.0 m/min casting speed, 
the damage strain in the hoop direction exceeds the damage threshold [17] at 12 nodes, all located 
near the off-corner subsurface region. This is caused by the hinging mechanism around the corner. 
No nodes fail at 2.2m/min casting speed or at the center surface. 

The effect of mold length and section size on the critical casting speed is discussed elsewhere 
[20].  The critical casting speed predictions match industrial experience. 
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Figure 5: Distorted Contours at 200mm below Mold Exit for the Casting Speed of 2.2m/min 
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Figure 6: Distorted Contours at 200mm below Mold Exit for the Casting Speed of 5.0m/min 

Conclusions 

A thermal-mechanical finite-element model, CON2D, has been developed to analyze the 
temperature, stress and strain distribution in the solidifying shell in the continuous casting of steel.  
This is a Lagrangian approach with a 2-D generalized plane strain condition, which gives a 
reasonable prediction of 3-D mechanical behavior by solving incremental equations within a 
horizontal slice domain.  Unified elastic-viscoplastic constitutive models for both austenite and δ-
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ferrite phases of the steel match tensile and creep test data.  Liquid is treated by giving it a elastic-
perfect-plastic constitutive model with small yield stress to prevent nonphysical high shear stress in 
the liquid.  A robust and efficient time integration technique, alternating local-global method, is 
adopted to integrate the highly non-linear constitutive equations.  An efficient contact algorithm 
enables proper treatment of the interaction between the mold wall and shell surface.  Ferrostatic 
pressure from the liquid is taken into account through an internal boundary condition.  An empirical 
hot tear fracture criterion is used to predict hot tear cracks quantitatively.   

The model is validated by extensive comparison with an analytical solution for solidification 
stress. It is then applied to investigate the effect of casting speed during continuous casting of a 
square steel billet.  If casting speed exceeds a critical threshold, then sub-surface, off-corner 
longitudinal hot tear cracks are predicted to form due to sub-mold bulging.   
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