Thermomechanical Finite-Element Model of Shell Behavior

in Continuous Casting of Steel

CHUNSHENG LI and BRIAN G. THOMAS

A coupled finite-element model, CON2D, has been developed to simulate temperature, stress, and shape
development during the continuous casting of steel, both in and below the mold. The model simulates a
transverse section of the strand in generalized plane strain as it moves down at the casting speed. It
includes the effects of heat conduction, solidification, nonuniform superheat dissipation due to turbulent
fluid flow, mutual dependence of the heat transfer and shrinkage on the size of the interfacial gap, the taper
of the mold wall, and the thermal distortion of the mold. The stress model features an elastic-viscoplastic
creep constitutive equation that accounts for the different responses of the liquid, semisolid, delta-ferrite,
and austenite phases. Functions depending on temperature and composition are employed for properties
such as thermal linear expansion. A contact algorithm is used to prevent penetration of the shell into the
mold wall due to the internal liquid pressure. An efficient two-step algorithm is used to integrate these
highly nonlinear equations. The model is validated with an analytical solution for both temperature and
stress in a solidifying slab. It is applied to simulate continuous casting of a 120 mm billet and compares
favorably with plant measurements of mold wall temperature, total heat removal, and shell thickness,
including thinning of the corner. The model is ready to investigate issues in continuous casting such as
mold taper optimization, minimum shell thickness to avoid breakouts, and maximum casting speed to

avoid hot-tear crack formation due to submold bulging.

I. INTRODUCTION

COMPUTATIONAL models are important tools to gain
insight into thermal and mechanical behavior during complex
manufacturing processes such as the continuous casting of
steel billets. This process features many interacting phenom-
ena which challenge modeling methods, shown in Figure 1(a).
Starting with the turbulent flow of molten steel into the mold
cavity, superheat is dissipated during flow recirculation in
the liquid pool prior to solidifying a shell against the walls
of a water-cooled copper mold. Heat transfer is controlled
by conduction through the solidifying steel shell, the mold,
and, especially, the size and properties of the interfacial
layers between them. After initial solidification at the menis-
cus, the shell tends to shrink away from the mold walls due
to thermal contraction. Over most of the strand surface, inter-
nal “ferrostatic pressure” from the head of molten metal main-
tains good contact between the shell and the mold. However,
shrinkage near the corners may create gaps or intermittent
contact, which greatly lowers the local cooling rate. The
extent of the gap depends on the composition-dependent
shrinkage of the steel shell, its creep resistance, the casting
speed, taper of the mold wall, thermal distortion of the mold
wall, and the thermal properties of the material filling
the interfacial gap. The mechanical behavior of the shell
also controls the formation of defects such as hot-tear
cracks and breakouts and depends on thermal shrinkage,
high-temperature inelastic stress-generation rate, solid-state
phase transformations, temperature, steel composition, mul-
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tidimensional stress state, and deformation rate. The harsh
environment of the steel plant makes it difficult to conduct
experiments during the process. To improve insight into
these phenomena demands sophisticated mathematical mod-
els, to aid the traditional tools of physical models, lab, and
plant experiments.

A thermal-mechanical finite-element model that incorpo-
rates the aforementioned phenomena, named CON2D, has
been developed in the Metals Processing Simulation Labo-
ratory at the University of Illinois at Urbana-Champaign over
the past decade'™ with several applications.>'2I After a
brief literature review, this article describes the features of
the CON2D model. It then presents its validation with ana-
lytical solutions and a simulation of a continuous steel bil-
let casting process, where plant measurements were available
for comparison.

II. PREVIOUS WORK

Many previous computational models have investigated
thermal stress during the continuous casting of steel, includ-
ing models of billet casting,!'*!”) beam blanks,*”! slab cast-
ing, 2611131421311 and thin-slab casting.*>3334 Brimacombe,
Grill, and co-workers first applied computational thermal-
stress models of a two-dimensional (2-D) billet section under
plane stress!'**! as it moved down the caster. These and
similar early models!?!?>?* revealed important insights into
crack formation, such as the need to avoid reheating. This
infant stage of computational stress modeling was qualita-
tive due to the lack of material properties at high tempera-
ture, a simple elastic-plastic constitutive model, and coarse
meshes due to computer limitations.

Rammerstorfer e al. added a separate creep function in
developing a thermoviscoelastic-plastic stress model of a
transient one-dimensional (1-D) slice domain through a
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Fig. 1—Modeling domain of casting billet: (@) schematic of billet casting, (b)
L-shaped mess of three-node heat-transfer elements (shown) connected into six-
node stress elements, and (c¢) schematic of slice domain at the billet centerline.
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slab.*¥ Kristiansson''>! advanced the traveling-slice model
with stepwise coupling of the thermal and stress computations
within a 2-D billet section, based on the interfacial gap
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between the mold and shell. This model also featured dif-
ferent creep constants for modeling austenite and 6-ferrite and
temperature-dependent properties. Similar models were devel-
oped for slab sections,”® including some that assumed plane
strain.?” Kelly et al.!'®! developed an axisymmetric model
of coupled thermal stress in round billets to study the effect
of carbon content on the formation of longitudinal cracks.
Elastic-stress analysis was performed on the mold and the
billet to determine the interfacial-gap profile, followed by
elastic-plastic stress analysis of the billet.

Recently, several improved models of the thermal-mechanical
behavior of continuous-cast steel have been developed.
Boehmer et al.!'” coupled a three-dimensional (3-D) in-house
heat-flow model and a 2-D thermal-stress model in the
ADINA model, to analyze a continuous-cast billet section
in plane stress. An elastoplastic constitutive model was
adopted, including strain-rate-dependent strength and plas-
ticity, and a separate creep model, if necessary. The solid-
ifying solid was discretized with a deforming grid, and liquid
elements were deleted from the stress simulation.

A transverse-slice model, AMEC2D, was developed to simu-
late beam-blank casting, including elastic-viscoplastic behavior
and a simple fluid-flow model to account for superheat trans-
port in the liquid pool.?” Park et al. applied AMEC2D to
investigate the effect of mold-corner radius on shell growth
and longitudinal corner cracks in billets.!'8) This model
assumed plane stress and neglected the effects of superheat
variations.

Huespe et al. developed the Arbitrary Lagrangian-Eulerian!*!
and mixed Eulerian-Lagrangian'®! thermal-mechanical models,
to analyze stress/strain distributions in continuous-cast round
steel billets. These rigorous models adopt elastic-viscoplastic
material behavior with temperature- and history-dependent mater-
ial parameters, but are computationally intensive and assume
2-D axisymmetry. They show that the generalized plane-strain
assumption matches closest to the real behavior, short of a full
3-D analysis.

Many important related aspects of continuous casting have
been modeled in depth and are discussed elsewhere,!3>-3¢!
including fluid flow in the molten steel pool,*”! nonequi-
librium solidification of the shell,?>3% thermal distortion
of the mold,® bulging and bending of the strand below
the mold,“**! and crack prediction.?>42!

Although they have generated important insights, previous
thermal-mechanical models of shell solidification in the mold
still oversimplify some phenomena or are too computation-
ally expensive to simulate large-scale problems with suffi-
cient mesh and time-step refinement to be accurate. There
is still a need for better models to gain more quantitative
insight into thermal-mechanical behavior and crack prediction
in continuous casting of steel.

III. GOVERNING EQUATIONS

The model solves the transient heat-conduction equation
and corresponding force-equilibrium equation for tempera-
ture, displacement, strain, and stress in a transverse Lagrangian
reference frame moving downward with the steel shell at the
casting speed, as shown in Figure 1(a). Both 2-D and 1-D
slice domains are simulated, as shown in Figures 1(b) and (c),
respectively.
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A. Heat-Transfer and Solidification Model

The model first solves the transient energy balance (Eq. [1]),
where H(T) and k(T) are the isotropic temperature-dependent
enthalpy and conductivity, respectively.**!

IH (T)
aT

P = V- (k(I)VT) [1]

A 2-D simplification of the full 3-D process is reason-
able, because axial (z direction) heat conduction is negligi-
ble relative to advection at the high Péclet number of this
steel continuous casting process (vL/a = 2 X 10%).*

#p = 0.0167 m/s, L = 1 m, p = 7500 kg/m’, ¢, = 0.6 kJ/kgK, K =
40 W/mK.

Applying the chain rule to the left-hand side of Eq. [1]
isolates the specific heat (c,) and latent heat (L) together in
a convenient function, dH(T)/dT, in Eq. [2]. Heat-balance
numerical errors are lessened by providing an enthalpy-
temperature look-up function.

) ) 2o
P\ "ar Nar) = ax\FD 5 )+ 5\

Boundary conditions can be a fixed temperature, heat flux,
convection, or a heat-resistor model across the interfacial
layer between the mold wall and the steel surface.[*! The
latter enables the fully coupled heat-transfer and stress ana-
lysis described in Section VII-C. The thermal-property func-
tions of different steels, including conductivity and enthalpy,
are given in Section X-B.

B. Stress Model

The general governing equation for the static-mechanics
problem in this Lagrangian frame is given by the force-
equilibrium balance in Eq. [3].4Y

Vg +pb=0 [3]

Below the meniscus region, axial temperature gradients and
the corresponding displacement gradients are generally small,
so it is reasonable to apply a generalized plane-strain assump-
tion in the casting direction. This enables a 2-D transient-
stress analysis to provide a reasonable approximation of the
complete 3-D stress state. Although this is not quite as accu-
rate as a fully 3-D analysis,"®! this slice-model approach can
realistically model the entire continuous casting process, with
the possible exception of the meniscus region, at a relatively
small computational cost.

The incremental governing equations acting over each
time step (A7), for the generalized plane-strain condition,
simplify Eq. [3] to the following:

dAo, N

0x ady
Ao, . dAT,,

dy dx (4]
[Ac.dA = AF.

[xAo.dA = AM,

0AT,,

ijasz =AM,
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Incremental total strains {Ag} are related to displacements
{u,, u,, u.} according to Eq. [5].

_ 0Au,
dx
dAu,
"= oy (5]

1/0Au, 9Au,
Ag,, = < > 4+ u>
T2\ ox ay

Ae,=a + bx + cy

Ae,

Ae

There are no body forces, because the ferrostatic pressure
caused by gravity acting on the liquid is instead applied
through the internal boundary conditions described in Sec-
tion IX-B. Besides the regular boundary conditions like fixed
displacements and surface tractions, a special type of bound-
ary, mold-wall constraint, is included in CON2D to model
the interactions between the mold wall and the steel surface,
as addressed in Section VIII-B. The distorted shape of the
mold has an important influence on the size of the interfacial
gap, heat transfer, and, consequently, stress, and so is incor-
porated as discussed in Section VIII-A.

Twofold symmetry can be assumed in the current contin-
uous casting application, so the constants related to bending
(b and c in Eq. [5] and AM, and AM, in Eq. [4]) all vanish,
and Ag, represents the unconstrained axial (thickness) con-
traction of each 2-D slice.

IV. CONSTITUTIVE MODELS

Increments of stress and elastic strain are related through
Hook’s Law (Eq. [6]). Matrix [D] contains the isotropic
temperature-dependent elastic modulus (E(7)), and Poisson’s
ratio (v), given in Eq. [7].

{Ac} = [D]{Ae.} + [AD]{e,.} [6]
where {0} = {0, 0, 7, 0.} {e} = {&, 8,8, &}

E(T)

D] =
(1 +v)(1—-2v)
1—v v 0 1% 7]
V 1—v 0 v
1—2v
0 0 0
2
V v 0 1—v

The incremental total strains ({Ae}) in Eq. [S] are com-
posed of elastic ({Ag,}), thermal, ({Ag,,}), inelastic ({Ag;,}),
and flow ({Agqe,}) strain components, as given in Eq. [8].

{Ae} = {Ag,} + {Agy} + {Ag;} + {Aepow}  [8]

The totals of all strains at a given time (¢ + Af) are
obtained by accumulating the strain increments at each prior
time step. For example, the total strain is accumulated as
follows (Eq. [9]):

{81+At} — {8t} + {ASHAI} [9]
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A. Thermal Strain

Thermal strains arise due to volume changes caused by
both temperature differences and phase transformations,
including solidification and solid-state phase changes between
crystal structures, such as austenite and ferrite. The isotropic
thermal-strain vector, {Ag,,}, given in Eq. [10], is based on
the phase fractions and the thermal linear-expansion func-
tion, (TLE), discussed in Section X-C.

{Asii*} = (TLE(T"™) — TLE(T"){1 101} [10]

B. Inelastic Strain

Inelastic strain includes both strain-rate-independent plas-
ticity and time-dependent creep. Creep is significant at the
high temperatures of this process and is indistinguishable
from plastic strain. Thus, this work adopts a unified consti-
tutive model of the mechanical behavior to capture the tem-
perature- and strain-rate sensitivity of high-temperature steel.

The inelastic strain rate (&;,) is described by different con-
stitutive models according to the microstructural state of the
solid steel.

. JE,-s pctd =10 pct (1]

Ein €,—y Pctd < 10 pet
where €;,_5 and E'i,,,y are the equivalent inelastic strain rates
of ferrite and austenite, respectively, as given in Section X-D.
The scalar inelastic strain-rate function follows the ferrite
function (6 or «), whenever the phase fraction of ferrite
exceeds 10 pct of the total volume. This is justified by consid-
ering the steel with two phases to act as a composite mater-
ial in which only a small amount of the weaker ferrite phase
weakens the mechanical strength of the whole material. The
plain-carbon steels treated in this work are assumed to harden
isotropically, so the von Mises loading surface, associated
plasticity, and normality hypothesis in the Prandtl-Reuss flow
law is applied:™*”

0_/

€, — [12]

Vl().

U
=
N | W

o', @ and g, are the plastic strain-rate tensor,
the deviatoric-stress tensor, the equivalent stress scalar (or von
Mises effective stress), and equivalent inelastic strain-rate
scalar, respectively. In this work, the equivalent inelastic
strain rate, E',-n , bears a sign determined by the direction of
the maximum principal inelastic strain, as defined in Eq. [13],
in order to achieve kinematic behavior (Bauschinger effect)

during reverse loading.

in>

where &

2

Ein c g ,N,,éin : gin
Emax
Emax = Emin [13]
_ |8max|
where ¢ =
Emin
Emax < €min
|8min|

where &, = max (€11, €in22> €in33) Emin = MIN(Ejp115 Ein22s €in33)
The “:” operator indicates standard term-by-term tensor
multiplication. Equations [12] and [13] allow an isotropic
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scalar to represent the 3-D strain-rate state. Appendix B
defines o', o and Eq. [12] in 2-D generalized plane-strain
form. Parameter ¢ (+1 or —1) makes the equivalent inelas-
tic strain rate have the same sign as the maximum principal
inelastic strain. The functions for the inelastic strain-rate
scalars, él-n, described in Section X-D, must be integrated
to find the {Ag,,} value needed in Eq. [8], as described pre-
viously in this section.

C. Strain in Liquid Elements

In this model, the liquid elements are generally given no
special treatment regarding material properties and finite-
element assembly. However, liquid reacts very differently
from solid under external loads. It deforms elastically under
hydrostatic force like a solid, but deforms dramatically under
shear force. If any liquid is present in a given finite element,
a constitutive equation is used to generate an extremely rapid
creep (shear) rate:

s = {CA(|C(T| - U'yield) lcol > oyiea
tow 0 lco] = oyie

The parameter A is chosen to be 1.5 X 10 MPa™'s™! to
match the viscosity of molten steel.[*®! Equation [14] is
another format of the linear viscous equation**! of the lam-
inar fluid, which is a reasonable assumption for the liquid
steel in the mushy zone. Liquid deforms under any nonzero
shear stress according to Newtonian fluid dynamics. Thus,
Oyieia should be zero. To avoid numerical difficulty, however,
Oyiea 18 treated as a tolerance-accuracy parameter with no
physical nature and is given a value of 0.01 MPa.

This method effectively increases shear strain and, thus,
enforces negligible liquid strength and shear stress. The crit-
ical temperature where the liquid fraction is sufficient to
make the element act as a liquid is the “coherency tempera-
ture” (Teonerency)> currently defined as being equal to the
solidus temperature. To generalize this scalar strain rate to
a multidimensional strain vector, the same Prandtl-Reuss
Egs. [12] and [13] are used as for the solid, Bin-

This fixed-grid approach avoids the difficulties of adap-
tive meshing while allowing strain to accumulate in the
mushy region. As in the real continuous casting process, the
total mass of the liquid domain is not constant. The inelastic
strain accumulated in the liquid represents mass transport
due to fluid flow and, so, is denoted “flow strain.” Positive
flow strain indicates fluid feeding into the region. This is
important for the prediction of hot-tear cracks. The disad-
vantage of using this high-creep-rate function to model liquid
is the increased computational difficulty at the solidification
front. This requires the use of a very robust local iteration
algorithm.*!

[14]

V. FINITE-ELEMENT IMPLEMENTATION
A. Heat-Transfer and Solidification Model

The three-node triangle finite element was employed to
approximate temperature in the domain as a piecewise lin-
ear function. The standard Galerkin method!** applied to
Eq. [2] gives the following global matrix equations:

[KUT} + [CUT} = {F,} + {Fyup} [15]
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where [K] is the conductance matrix including the effect of
conductivity (k(T')), and [C] is the capacitance matrix includ-
ing the effect of specific heat and latent heat in H(T). Within
each element, an effective specific heat (c,,) is evaluated using
a spatial averaging technique suggested by Lemmon.*”!

(BH )2 N <3H )2
oH
Cpo = o = 0x 0y [16]
T < aT )2 < aT >2
J— + —_
0x dy
The [K] and [C] matrices are found from their element matri-
ces, given in Appendix A, through standard finite-element method
summation over the domain. A three-level time-stepping method
proposed by Dupont et al.*8! was adopted to solve Eq. [15].

Temperatures at the current time ¢ + At are found from the tem-
peratures at the previous two time steps, ¢ and ¢ — At.

(T} = i{?)T”A’ + 174} [17]
. Tt+At_ Tt
{1} = {At} [18]

Substituting Egs. [17] and [18] into Eq. [15] and rearranging
gives a recursive global matrix equation expressing the time and
spatial discretization of the heat-conduction equation (Eq. [2]).

[C]
|: [K] + T :|{T[+At} = {Fq} + {Fqsup}

1 (] [19]
t—At t

ST )+ ST

Equation [19] is solved at each time step for the unknown
nodal temperatures {77} using a Choleski decomposition
solver.*’! The terms {F,} and {F,,,} are the heat-flow-load
vectors containing the distributed heat flux at the domain
boundary and the superheat flux at the internal moving bound-
ary, respectively. On each domain boundary where heat flux
is applied, the contributions from each element on the bound-
ary are summed as follows:

{F,} = E

boundary elements

JINTT g aL

qij L[j
2

boundary elements
2

[20]

where L; is the distance between node i and j. The heat-flux
function (q) is specified, such as being equal to the g,,, value
given in Section VIL The term {Fg,} is calculated simi-
larly with a different set of boundary elements, using g,
in Section VII.

B. Stress Model

Applying the standard Galerkin method to Eqgs. [4] through
[7] gives the following set of linear equations over the finite-
element domain:

[K]{AM}HAI — {AFlh}HAt + {AFl_n}tJrAr

t+Ar t [21]
+ {Fjp} - {Fel}
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where [K], {AF,}, {AF,}, {Fy}, and {F,} are the stiffness
matrix and incremental force vectors due to incremental ther-
mal strain, inelastic strain, ferrostatic pressure and external
surface tractions at specified boundaries, and elastic-strain
corrections from the previous time step, respectively. Refer
to Egs. [64] through [67] in Appendix B for more details. At
each time step, Eq. [21] is solved for the incremental dis-
placements ({Au}) using the Choleski method,*"! and the
total displacements are updated via Eq. [22].

()™ = {u)" + {Au) [22]

Then, the total strains and stresses are updated from Egs. [5]
and [6], respectively. The six-node quadratic-displacement tri-
angle elements use the same grid of nodes that were connected
into three-node elements for the heat-flow calculation. Further
details are given in Appendix B.

VI. INTEGRATION OF THE CONSTITUTIVE
MODEL

Highly strain-rate-dependent inelastic models require a
robust numerical integration technique to avoid numerical
difficulties. The nonlinear equations to be integrated are
given in Egs. [23] and [24] by combining Egs. [6] through
[8], neglecting the second term on the right-hand side of
Eq. [6].

0_1‘+At _ Dt+At (8 _srh in + AgHAt

= - [23]
_A8r+At Agf;rm)
Sltn+At — Sm + AsHAz [24]

The incremental equivalent plastic strain accumulated over
a time step is given in Eq. [25] based on a highly nonlin-
ear constitutive function, which depends on o and g;,, which
change greatly over the time step.

AL = F(T, '™, gL, pet C)At [25]

where F is one of the constitutive functions given in Eqgs. [46],
[47], or [14], depending on the current material state. Substi-
tuting Eqgs. [12] and [25] into Eqgs. [23] and [24] and using a
fully implicit time-stepping method, a new set of evolution
equations are obtained as follows:

+ + ~ +,
a_tAr_DzAr <8—8m 1n+A—8tAtAt

3 —t+Ar 7t+At O-H—At, [26]
_EF(T,O' , ,pctC)= At

t+At

M =gl + F(T, a8l pet C)At [27]

t+Ar —t+Atr

Two tensors, g and Aég, and one scalar, g, -, com-
prise 13 unknown scalar fields for 3-D problems or nine
unknowns for the 2-D problem here, which require the solu-
tion of Eqgs. [26] and [27]. Zhu implemented an alternating
implicit-explicit mixed time-integration scheme, which is
based on an operator-splitting technique that alternates
between local and global forms of the total strain incre-
ment and inelastic strain rate over each pair of successive
steps.””! Within each time step, ¢'*** and &, are first solved
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using a fully implicit time-integration technique based on
the current best estimation of the total strain increment A€,
which is taken from the previous time step A¢'. This is a
“local step” because it is spatially uncoupled.

Then, the improved estimates of o' and €/, from the

local step are used to solve for Ag by explicit finite-element
spatialw%ntegration through Eqgs. [21] and [5]. This is a “global
step.”

There is still a tensor unknown in Eq. [26], which makes
even the local time-integration step computationally chal-
lenging. Lush et al. transformed this tensor equation into
a scalar equation for isotropic materials with isotropic
hardening.""!

6t+At — E*I+At _ 3[.LI+A’F(T, 6t+At’ —t+At’ pet C)At [28]

— K
where @™ is the equivalent stress of the stress tensor,

g™ defined subsequently.

A — i (st—Sih . T A&~ St;At At [29]

Equations [27] and [28] form a pair of nonlinear scalar
equations to solve in the local step for estimates of the two
unknowns £, and o',

Stress-Model Numerical Integration Procedure

Implementing the general 3-D procedure described pre-
viously for the 2-D generalized plane-strain assumption, the
integration procedure used in CON2D within each time step
is summarized as follows.

(1) Estimate {Ag} based on {Au} from the previous time
step: {A&} = [B]{Au}'.

(2) Calculate {o*}'**, &*, and {o*'}'™, needed to define
the direction of the stress vector.

(o™ = DI"™({e) — {en)'~{en) + (A&}
- 1+AL T [30]
—&pA{1101}7)

(3) Solve the following two ordinary differential equations

simultaneously for e and &M at each local Gauss
point, using a fully implicit bounded Newton—Raphson
integration method from Lush et al.®® This method gives
the best robustness and efficiency of several alternative
approaches evaluated.” Function F is either the
Kozlowski model III for y (Eq. [46]), the power law for

6 (Eq. [47]), or the flow strain for liquid phase (Eq. [14]).

EithrAr — sm + F(T Ar+At, it’:rm pct C)At

~t+Ar
(o

31
— 6*t+Az 3 t+AtF (T At+At’ 5lrn+At’ pCt C)Al‘[ ]

(4) Expand this scalar stress estimate into vector form:*

>'<V}H~AI — {o,*}r+m _ l

* +A T +A +A *1+At
(o Kt ’{5};0'*1 t:a*r I

m m

+ oA = (1101}

{0_*'}I+At 1

A tHAL + 70_*1+At {8}T [32]

{ A }1+A1 — A
o o §*r+At 3 m

(5) Calculate &5 from 6" and /' using the appropriate
F values for the local material phase.

1156—VOLUME 35B, DECEMBER 2004

(6) Expand this scalar inelastic-strain estimate 1nto a vec-
tor {&,,)""*" with the same direction as {6} usmg
the Prandtl-Reuss Eq. [12]; update {&;,}"" = {&;,}" +
{&,,} 7Y At only for solidified elements.

(7) Use classic finite-element method spatial integration
(Appendix B) to solve Eq. [21] for {Au}'*" based on
{éin},+At'

(8) Finally, find {Ae}* from {Au}'"*" and update {g}’ ™4
and {o} ™.

Overall, this alternating implicit-explicit scheme with
the bounded Newton—Raphson iteration gives the best robust-
ness and efficiency of several alternative finite-element
method time-integration approaches evaluated.™

VII. TREATMENT OF THE MOLD/SHELL
INTERFACE

Heat transfer does not depend directly on the force-
equilibrium equation, because the mechanical dissipation
energy is negligible. The heat-flow and stress models are
fully coupled with each other, however, when the gap
between the mold and steel shell is taken into account.
Shrinkage of the shell tends to increase the thermal resis-
tance across the gap where the shell is strong enough to
pull away from the mold wall. This leads to hot and weak
spots on the shell. This interdependence of the gap size and
the thermal resistance requires iteration between the heat-
a priori and stress models. As the gap size is unknown
advance, the heat resistance is also unknown. Thus, itera-
tions within a time step are usually needed. Contact between
the mold wall and shell surface is discussed in Section VIII-B.

A. Interface Heat Transfer

When the coupled heat-transfer and thermal-stress analysis
is performed, the heat-transfer boundary condition at the steel
surface is described by a gap heat-resistor model shown in
Figure 2, with parameter values listed in Table I. Heat leaves

Trowae

Tomer Trmaine Tkt

Fig. 2—Schematic of thermal resistor model of the interfacial layer between
mold and billet

Table I. Parameters of the Interface Model

Cooling water heat-transfer coefficient,

hwatcr (W/m2 K) 22,000 to 25,000

Cooling water temperature, Ty, (°C) 30 to 42
Mold wall thickness, d,,qq (mm) 6
Mold wall conductivity, kpqq (W/m K) 360
Gap conductivity, kg, (W/m K) 0.02
Contact resistance, 7egpue (M> K/W) 6 X 107*
Mold wall emissitivity 0.5
Steel emissitivity 0.8
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the steel shell via conduction and radiation across the inter-
facial gap. It is then conducted across the thin copper mold
and extracted by cooling water flowing across the back of the
mold tube. The temperature and the heat-convection coefficient
of the cooling water are input from the results of a preliminary
computation using the CON1D model, described elsewhere.!!
The contact resistance adopted in this model is several orders
of magnitude larger than the physical contact resistance!*®!
between a flat steel and copper surface, because it includes the
influence of oscillation marks.®!! The gap thickness is calcu-
lated during each iteration from the shell-surface displacement
and the mold wall position, according to the local values of
the mold taper and distortion, which are described in the next
section. Once the gap size is determined, the heat flux (gg.p,)
across the interfacial layer between the mold wall and steel sur-
face is solved together with the mold hot-face temperature (7},,,1):

Tshell B Twater

Goap = — [33]
T, gapmold
where
dgap
X Tcontact
_ 1 + Tmold gap
rgapmold - h k » dgap
e " 1+ hrad( + rcontact)
kgap
Beag = 5.67 X 10 2(Tgpent + Tinot) Tahert + Tinota)
_ 1
e =
1 1
—+—+1
En &

—8— 4
567 X 10 eTshell + Tshell/rmold + Twater/rgap

Told =
old
1/rmold + l/rgap

r _ dmoldhwater + kmold

mold

hwaterkmold
_ dgap
rgap - k + Tcontact

gap

B. Gap-Size Calculation

The gap thickness (dy,,) is estimated for each boundary
node at the shell surface, based on gaps from the previous
iteration (n):

Jn+l _ 2 +A
dgap - max({u(dgnap)} Xn— d\l;vallt’ dgapmin)

where [34]
t+Ar _ gr+Ar t+Ar
dwall - dlaper - dmolddist

where {u}, 1, dya, diapers Amolddise AN dggpmin are the displace-
ment vector at boundary nodes, unit-normal vector to the
mold wall surface, mold wall position, mold wall position
change due to mold distortion, and the minimum gap thick-
ness, respectively. A positive dy,, value indicates a real space
between the mold and shell.
The minimum gap value is set as
rcomactkgap [35]

d gapmin =
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It physically represents the effective oscillation-mark depth
at the shell surface. When the calculated gap size is less than
this minimum gap size, then the contact resistance (7¢ontact)
dominates heat transfer between the shell surface and the
mold wall. Gap-size variation within the minimum gap size
is assumed not to affect the thermal resistance, which accele-
rates convergence.

C. Thermal-Stress Coupling

The overall flow of CON2D is shown in Figure 3. Within
each time step, the computation alternates between the heat-
transfer and stress models through the following fully coup-
led procedure

(1) The temperature field is solved based on the current
best estimation of gap size, from the previous time step,
with Eq. [34]. The initial gap size at the beginning of
the simulation is simply zero around the strand perimeter
as the liquid steel at the meniscus flows to match the
mold contour.

(2) The incremental thermal strain is evaluated from the
temperature field at the current and previous time steps
(Eq. [10]). The inelastic strain is estimated by integrat-
ing Eq. [31] following the procedure described in Sec-
tion VI. The global matrix equation, Eq. [21], is solved
for displacements, strains, and stresses using the stand-
ard finite-element method.

(3) The gap sizes for the next iteration are updated by

~

diet = Bdgs' + (1 — Bl [36]

where 3 is chosen to be 0.5.

(4) Finally, steps 1 through 3 are repeated until the gap-size
difference between two successive heat-transfer and
stress iterations, n and n + 1, is small enough:

> (g = dgap)’
nb [37]

> (di')’

nb

daige =

where nb is the number of boundary nodes. When dj;s;
becomes smaller than the specified “gap tolerance” (dy,,),
the gap size is considered converged.

VIII. MODELING THE MOLD WALL

The mold wall affects the calculation in two ways: (1)
altering the size of the interfacial gap and associated heat
transfer between the mold and strand through its distorted
shape; and (2) constraining the shell from bulging due to
the internal ferrostatic pressure.

A. Mold Wall Shape

The mold wall is defined in CON2D as a function of
distance below the meniscus. The shape of the mold varies
from its dimensions at the meniscus due to mold taper and
mold distortion. The mold is tapered to follow the shrink-
age of the steel strand to prevent excessive gaps from form-
ing between the mold wall and shell surface, as well as
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Fig. 3—Flow chart of CON2D.

preventing bulging of the shell. Linear taper is defined by
providing the percentage per meter as follows:

ct Taper/m W
dtaper = i Vel

38
100 2 [38]

where W, v, and t are the mold width, casting speed, and cur-
rent time below the meniscus, respectively. As the modeled
section of the steel strand moves down from the meniscus,
the mold wall distorts away from the solidifying shell and
tapers toward it.

Mold distortion arises from two main sources: thermal
expansion of the mold wall due to heating during operation,
and mold wear due to friction between the mold and the
strand. For the billet-casting simulation presented here, mold
distortion is considered to be simple thermal expansion as
follows, ignoring residual distortion and mold wear.

W . —
Amoladist = amold? (T_ To) [39]
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where T is the average temperature through the mold wall
thickness as a function of the distance below the mold exit,
T, is the average mold wall temperature where the solid shell
begins at the meniscus, a4 is the thermal-expansion coef-
ficient of the copper mold tube, and W is the section width.

Arbitrary complex mold shapes can be modeled by provid-
ing an external data file or function with mold wall positions
at different distances below the meniscus and even around
the perimeter. For example, complex 3-D mold distortion pro-
files™®! were used for slab casting simulations with CON2D.>¢!

B. Contact Algorithm for Shell-Surface Constraint

The mold wall provides support to the solidifying shell before
it reaches the mold exit. A proper mold wall constraint is needed
to prevent the solidifying shell from penetrating the mold wall,
while also allowing the shell to shrink freely. Because the exact
contact area between the mold wall and the solidifying shell is
not known a priori, an iterative solution procedure is needed.
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Some early finite-element models solved contact prob-
lems by the Lagrange multiplier approach, which introduces
new unknowns to the system as well as numerical difficult-
ies.®! This work adopts a method developed and imple-
mented by Moitra,*% which is tailored to this particular
casting-problem domain. It solves the contact problem only
approximately, but is easy to implement and is more sta-
ble. Iteration within a time step proceeds as follows.

At first, the shell is allowed to deform freely without mold
constraint. Then, the intermediate shell surface is compared
to the current mold wall position. A fraction of all penet-
rating nodes, identified by Eq. [40], is restrained back to the
mold wall position by a standard penalty method, and the
stress simulation is repeated.

{u}- = dyan < _dpen [40]

where d,,, is the specified penetration tolerance. Iteration
continues until no penetration occurs.

The nodes to be constrained are chosen by checking three
scenarios.

(1) In Figure 4(a), a portion of the shell surface with length
L penetrates the mold, and the maximum penetration is

Liquid

Solid
Gap--.._

Maold

Gap—J

Maximum A Le |
Penetration
(b)
Liquid
Solid
Gap
Mold

()

Fig. 4—(a) through (c) Three types of penetration modes in contact
algorithm.
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found at the centerline of the strand face. Those shell
boundary nodes in the half of this violated length near-
est to the face center (L.) are constrained in the next
iteration.

(2) In Figure 4(b), the center of the shell surface penet-
rates the mold but does not penetrate the most. Those
violated nodes from the maximum penetration position
to the face center are constrained in the next iteration.

(3) In Figure 4(c), the center of the shell surface does not
penetrate the mold. That half of the violated nodes closest
to the face center is constrained in the next iteration.

Commercial software, such as ABAQUS, generally con-
strains violated nodes one by one until convergence is
reached. The present method is believed to be more com-
putationally efficient for the particular quarter mold and
behavior of interest in this work. The friction between the
shell and mold surface is ignored in this model. This would
need to be added to consider phenomena such as transverse
cracks due to excessive taper.

IX. SOLIDIFICATION FRONT TREATMENT
A. Superheat Flux

Superheat is the amount of heat stored in the liquid steel
that needs to be extracted before it reaches the liquidus tem-
perature. Superheat is treated in one of two ways: (1) the heat-
conduction method and (2) the superheat-flux method. The
heat-conduction method simply sets the initial steel tempera-
ture to the pouring temperature and increases the conductiv-
ity of the liquid by 6.5 times to crudely approximate the effects
of fluid flow. This method equally distributes the superheat
over the solidification front. In reality, the superheat distrib-
ution is uneven due to the flow pattern in the liquid pool.

The second method first obtains the superheat-flux dis-
tribution from a separate fluid-flow computation, such as
done previously for billets’®* or slabs.33 This superheat flux
at a given location on the strand perimeter is applied to
appropriate nodes on the solidification front. Specifically,
it is applied to the two nodes just below the liquidus in those
3-node elements with exactly one node above the liquidus.
This is shown in Figure 5, where the isotherm is the lig-
uidus. The initial liquid temperature is set just above the lig-
uidus, to avoid accounting for the superheat twice.

Coherency Isotherm

Fig. 5—Schematic of how ferrostatic pressure is applied at the internal
boundary.
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B. Ferrostatic Pressure

Ferrostatic pressure greatly affects gap formation by encour-
aging contact between the shell and mold, depending on the
shell strength. The ferrostatic pressure is calculated by

F, = pgz [41]

where z is the distance of the current slice from the meniscus,
found from the casting speed and the current time. Ferro-
static pressure is treated as an internal load that pushes the
shell toward the mold wall, as shown in Figure 5. It is applied
equally to those two nodes just below the coherency tempera-
ture that belong to those three-node elements having exactly
one of its three nodes above the T operency isotherm. It is
assembled to the global force vector through Eq. [64] in
Appendix B, which gives

F I’Lij
— 2
F.} = 42
{ fp} moving bou%ry elements F pL,'j [ ]
2

where L; is the boundary length between nodes i and j within
a three-node element.

X. MATERIAL PROPERTIES
This work adopts temperature-dependent steel properties

chosen to be as realistic as possible.

A. Phase-Fraction Model

A pseudobinary-phase diagram for certain plain-carbon
steels,* developed from measurements by WON,P% is incor-

*QOther elements besides iron and carbon are 1.52 wt pct Mn, 0.015 wt
pet S, 0.012 wt pct P, and 0.34 wt pct Si.

porated to produce realistic phase-fraction evolution between
the solidus and liquidus temperatures. Figure 6 shows the
nonequilibrium Fe-C phase diagram, which defines the vol-
ume fractions of liquid, o-ferrite, and austenite used in this
work. The classical lever rule is used to calculate phase frac-
tions in each two-phase region, and a lever rule for ternary
systems is used in the three-phase region.””! The 100 and

1550 s =
* E. Schmidtmann ez. al., Arch. Eisenhuttenwes ,
1500 Liquid ]
-
<
=~ 1450 ]
E °
g =~
21400 S~
g ~ o
ke 4
B
r present Phase Diagram
1350 |- ——100% Solid y
— — 75% Solid -
W ZST(exp.)*
1300>...’l.Z‘[.)-I.-‘Fx.p.)f.|‘...|....|....| ........ 1

0 01 02 03 04 05 06 07 08
Carbon Content (%owt)

Fig. 6—Non-equilibrium Fe-C phase diagram!®®! used in CON2D.
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75 pct solid lines are compared with zero strength tempera-
ture (ZST) and zero ductility temperature (ZDT) measurements
by Schmidtmann et al.*®' They match very well.

Figure 7 shows the phase fractions thus generated as a
function of temperature for the 0.04 pct C carbon steel, which
is used in Section XIII. Note that the liquid fraction decreases
parabolically as the steel cools from its liquidus. This agrees
with a more sophisticated microsegregation model.*®)

B. Thermal Properties

The temperature-dependent conductivity function for plain-
carbon steel is fitted from measured data compiled by
Harste®® and is given in Eq. [43]. Figure 8 shows the con-
ductivity for several typical plain-carbon steels. The conduc-
tivity increases linearly through the mushy zone to the liquid
by a factor of 6.5 to partly account for the effect of convec-
tion due to flow in the liquid steel pool.>!

KW/mK) = K, fo + K, fy, + Ksfs + Kifi
where

K,=(80.91—-9.9269 X 1072T(°C) +4.613 X 1075T(°C)2)
(1 = a;(pct O)%)

100 f
90
%0 E 8-Ferrite
@0k
é 7 F Liquidug
= -
g 5F Solidus
g SOF
= F
z 40F Austenite
£ 30F Liquid
20F
10F
of : .
1400 1450 1500 1550

Temperature ("C)

Fig. 7—Fraction as a function of temperature for the 0.04%C steel.
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KY

21.6 — 8.35 X 107 *7(°C) [43]
Ks = (20.14 — 9.313 X 10> T(°C))(1 — a;(pct C)*)

K, = 39.0

a, = 0425 — 4.385 X 10 *T(°C)

a, = 0209 + 1.09 X 10> 7(°C)

The enthalpy curve used to relate heat content and tem-
perature in this work, H(T), is obtained by integrating the
specific heat curve fitted from measured data complied by
Harste!®®! as given in Eq. [44]. Figure 9 shows the enthalpy
for typical plain-carbon steels.

H(J/Kg) = H,f, + H,f, + Hsfs + H,f,

where
H, =

(5188 T(K) ™! — 86 + 0.5057(K)
—6.55 X 1073 T(K)? + 1.5 X 1077 T(K)}
— 1.11 X 10° T(K)~! — 4.72 T(K)
+ 2292 X 1073 T(K)? + 4056
— 115 T(K) + 6.238 X 1073 T(K)?
+ 5780
34.87 T(K) — 0.016013 T(K)?
— 18,379
— 10.068 T(K) + 2.9934 X 1073 T(K)?
[ — 521766 X 10°T(K) "' + 12,822

T(K) = 800
800 < T(K) = 1000
1000 < T(K) =< 1042

1042 < T(K) = 1060

1060 < T(K) < 1184

H, = 0.43T (K) + 7.5 X 10 °T(K)* + 93 + a,

_ [37(pet ©) + 1.9 X 10°(pet C)’]
Y (44(pct C) + 1200)

where a

Hs = 04417 (K) + 8.87 X 10 °T(K)* + 51 + as
[18(pct C) + 2.0 X 10°(pct C)*]
(44(pct C) + 1200)
H, = 0.825T (K) — 105 [44]

where as =

For the multiphase region, both conductivity and enthalpy are
calculated by weighted averaging of their different phase frac-
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Fig. 9—Enthalpy of plain carbon steels.
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tions (f). The subscripts (e, 7y, 8, and /) in Egs. [43] and [44]
represent a-ferrite, austenite, 6-ferrite, and liquid, respectively.
Density is assumed constant (7400 Kg/m?) in order to main-
tain constant mass.

C. Thermal Linear Expansion

The thermal linear-expansion function is obtained from
solid-phase density measurements complied by Harste!*8!
and Harste et al.®! and liquid density measurements by
Jimbo and Cramb.!"!

3/ p(To) 1

p(T)

TLE =

where

p(Kg/m’) = p, f, + Py Sy T psfs + pufi
P = 7881 — 0.324T(°C) — 3 X 10 °T(°C)*
3 100(8106 — 0.517(°C))
(100 — (pet C))(1 + 0.008(pct C))°
B 1008011 — 0.477(°C))
(100 — (pet C))(1 + 0.013(pct C))°
p; = 7100 — 73(pct C) — (0.8 — 0.09(pct C))
(T(°C) — 1550)

Py [45]

Ps

A simple mixture rule is applied to obtain the overall density
from the values of the different phases. Figure 10 shows the
thermal linear-expansion curves for typical plain-carbon
steels, assuming the arbitrary reference temperature, T, to
be the solidus temperature.

D. Inelastic Constitutive Properties

The unified constitutive model developed here uses the
instantaneous equivalent inelastic strain rate, é,—,,, as the scalar-
state function, which depends on the current equivalent stress,
temperature, steel carbon content, and the current equivalent
inelastic strain, which accumulates below the solidus temper-
ature.[6263] The model was developed to match tensile-test
measurements of Wray'® and creep-test data of Suzuki et al.'*"
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Fig. 10—Thermal linear expansion (TLE) of plain carbon steels.
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Model III by Kozlowski, given in Eq. [46], is adopted to simu-
late the mechanical behavior of austenite.

iy (115) = fracl V" Fy exp (—4'46;(;) 104)
where
F, = co (MPa) — fi&g,[E./" "
fi = 130.5 — 5.128 X 10> T(K)
£ = —0.6289 + 1.114 X 10°T(K) (46]
f3=8.132 — 1.54 X 10 T(K)

Jrerc = 4.655 X 10* + 7.14 X 10*(pct C)
+ 1.2 X 10°(pet C)?

where the direction of & (c) is given in Eq. [13], except using
the principal stresses instead of principal strain components.
A power-law model was developed to model the behav-
ior of &-ferrite,!'!! given as follows:
E'm—a(l/s) = 0~1F(s|1173|"_1
where
_ co(MPa)
f(T(K)/300) (1 + 1000]z,,|)"
fo = 1.3678 X 10*(pct €)~336x10”
m = —9.4156 X 10 ° T(K) + 0.349501

(1.617 X 10"*T(K) — 0.06166) "

Fs

[47]

n

Figure 11 compares the stresses measured by Wray™®? to
those predicted by the constitutive models at 5 pct strain,
integrated under different constant strain rates. The constitutive
models give acceptable performance. This figure also shows
that é-ferrite, which forms at higher temperatures found near
the solidification front, is much weaker than austenite. This
greatly affects the mechanical behavior of the solidifying
steel shell.

A simple mixture rule is not appropriate in two-phase
regions that contain interconnecting regions of a much weaker
phase. Thus, the constitutive model given in Eq. [47] is applied
in the solid whenever the volume fraction of ferrite (8-ferrite
above 1400 °C, a-ferrite below 900 °C) is more than 10 pct.
Otherwise, Eq. [46] is adopted.

To make the constitutive model properly handle kinematic
hardening during reverse loading, the equivalent stress/strain
used in Egs. [46] and [47] is given the same sign as the princi-
pal stress/strain having the maximum magnitude. The inelastic
strain rate, as a consequence, also bears a sign.

Two uniaxial tensile experiments™*%3 and a creep experi-
ment'®! on plain-carbon steel at elevated temperatures were
simulated by CON2D to test the performance of its constitu-
tive models. Figures 12(a) and (b) show CON2D predictions
of tensile-test behavior of austenite and delta-ferrite at constant
strain rate around 10~* s~!, which is typically encountered
in the shell during continuous casting.”* The results also com-
pare reasonably with experiments at small strain (<5 pct),
although they overpredict the stress when the strain exceeds
5 pct. Because the strain generally stays within 5 pct for the
entire continuous casting process, the constitutive models
are quite reasonable for this purpose. Figure 13(a) shows the
CON2D predictions of creep-test behavior at constant load.
The inelastic-strain predictions match the measurements rea-
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Fig. 11—Comparison of CON2D predicted and measured stress!®*!
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Fig. 14—Elastic modulus for plain carbon steels used in CON2D.%3!

sonably well, especially at times shorter than 50 seconds, of
most concern to continuous casting in the mold region. Beyond
this time, CON2D underpredicts creep, which is consistent
with the overprediction of stress, observed in the tensile test
cases. Monotonic loading is unlikely beyond this length of
time, anyway. Figure 13(b) compares CON2D predictions and
creep-test measurements'®! under a sinusoidal alternating load
with full reversal (R ratio = 1.167). Although more measure-
ments and computations of complex loading conditions would
be helpful, these comparisons show that the constitutive mod-
els in CON2D are reasonable, even for conditions that include
reverse loading.

E. Elastic Properties

The temperature-dependent elastic-modulus curve used in
this model is a stepwise linear fit of measurements by
Mizukami et al.,'® given in Figure 14. Unlike in some other
models, the elastic modulus of the liquid here was given the
physically realistic value of 10 GPa. The Poisson ratio v is
constant at 0.3. Measurements of higher Poisson ratios at
high temperature are attributed to creep occurring during the
experiment. Incorrectly incorporating part of the volume-
conserved plastic behavior, where v = 0.5, into the elastic
v would cause numerical difficulty for the solver.

METALLURGICAL AND MATERIALS TRANSACTIONS B

A
|
% N A
= iR Al !
£ 1E 4 A
Z. oF X !
w L g F IR |
i - | [y
gl 14 4 a LF
o 2 |
3 |
o4

Sirain (%)
(b)

Fig. 13—Predicted behavior of austenite compared with creep and cyclic loading test measurements at 1300 °C:'*! () constant load and (b) alternating load.

XI. NUMERICAL PERFORMANCE

A 2-D transient elastic-viscoplastic thermal-stress simu-
lation with solidification, internal pressure, and contact is a
challenging problem even for a supercomputer. The efficient
algorithms in CON2D allow the complete solution of prac-
tical problems in reasonable times with reasonable accuracy.
Coupling between the thermal and stress models can cause
instability, however, unless parameters such as time-step
size, tolerances of gap size, and penetration are carefully
chosen. Current experience indicates that the initial time step
for a fully coupled simulation with mold wall constraint
should be 0.0001 seconds, which is 10 times smaller than
the smallest time step size adopted for the uncoupled ther-
mal-stress simulation by Zhu."*! The time-step size can be
increased twentyfold up to 0.005 seconds as the simulation
progresses. Increasing the time-step size further does not
speed up the simulation due to the need for more in-step
iterations. It takes about 72 hours to perform a complete,
fully coupled 19-second mold simulation of a 120 X 120
mm billet with 7381 nodes on a PENTIUM* IV 1.7 GHz

*PENTIUM is a trademark of the Intel Corporation, Santa Clara, CA.

workstation running the WINDOWS* 2000 Professional oper-

*WINDOWS is a trademark of the Microsoft Corporation, Redmond, CA.

ating system using less than 500 MB of random-access mem-
ory. The corresponding simulation without coupling allows
larger time steps (0.001 to 0.5 seconds) and takes only about
5 hours. Below-mold simulations allow even larger steps and
take only about 1 hour.[®

Reasonable tolerances should be specified to achieve satis-
factory gap-size convergence while avoiding excessive mold
wall penetration. The minimum gap, dyupmin, i$ chosen here to
be 0.012 mm, which is less than the effective thickness of the
oscillation marks and surface roughness. Gaps smaller than this
are considered to be converged. Thus, the effective oscillation
mark-depth dominates the heat resistance across the gap and
must be determined either by measurement or calibration. The
tolerance for the mold wall penetration, d,,,, is chosen to be
0.001 mm, which is on the order of the incremental displacement
between two consecutive time steps. Too large a tolerance tends
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to make the simulation inaccurate, while too small a tolerance
makes the program overreact to small penetrations and slows
down the simulation. The best value of d,,.., depends on the
problem. Generally, a smaller value is needed when the simula-
tion region of interest is closer to the meniscus.

XII. MODEL VALIDATION

An analytical solution of the thermal-stress model in an uncon-
strained solidifying plate, derived by Weiner and Boley,” is
used here as an ideal validation problem for solidification-stress
models. Constants for this validation problem were chosen here
to approximate the conditions of interest in this work and are
listed in Table II.

The material in this problem has elastic—perfect plastic behav-
ior. The yield stress drops linearly with temperature from 20 MPa
at 1000 °C to 0 MPa at the solidus temperature of 1494.35 °C.
For the current elastic-viscoplastic model, this constitutive rela-
tion was transformed into a computationally more challenging
form, the highly nonlinear creep function of Eq. [14] with A =
1.5 X 10% and Oyiea = 0.01 MPa in the liquid. A very narrow
mushy region, 0.1 °C, is used to approximate the single melt-
ing temperature assumed by Boley and Weiner. In addition to
the generalized plane-strain condition in the axial z direction, a
similar condition was imposed in the y direction (parallel to the
surface) by coupling the displacements of all nodes along the
top surface of the slice domain, as shown in Figure 1(c). The
analytical solutions were computed with MATLAB.®¥!

Figures 15 and 16 show the temperature and the stress dis-
tributions across the solidifying shell at different solidification
times using an optimized mesh and time step, similar to that
adopted for the 2-D billet-casting simulation. The mesh was
graduated, increasing in size from 0.3 mm at the left-hand end
to 2.0 mm at right-hand end, and the time-step size increased
from 0.001 seconds at the beginning to 0.1 seconds at the end.

Figures 17 and 18 show the relative average errors, given in
Eq. [48] for the temperature and stress predictions, respectively.

N
2 \/ (TiCONZD _ Yw’Analytical)Z

1

Errory (pct) = X 100
! N |Tmeh - Tco]d|
i \/ (O?CONZD _ UiAnalytical)z [48]
Error,, (pct) = L X 100
N |0.(Tmell) - O (Tcold)l

Accuracy of the CON2D predictions increases if the mesh
and time step are refined together. A fine uniform mesh of
0.1 mm, with a small uniform time step of 0.001 seconds,
produces relative average errors within 1 pct for temperature
and within 2 pct for stress. However, the computational cost
is also high. Note that the inaccuracy is severe at early times
of the simulation, especially for the stress predictions. This is
because the solidified layer initially spans only a few elements.
As the solid portion of the plate grows thicker, the mesh
size and time-step requirements become less critical. Thus, a
nonuniform mesh with increasing time-step size is better to
satisfy both accuracy and efficiency. The optimal choice,
used in Figures 15 and 16, gives a decent prediction with
the relative average errors within 2 pct for temperature and
3 pct for stress. A similar mesh was adopted for the actual
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Table II. Constants Used in Boley and Weiner
Analytical Solution

Conductivity (W/m K) 33.0
Specific heat (kJ/kg K) 0.661
Latent heat (kJ/kg) 272.0
Elastic modulus in solid (GPa) 40.0
Elastic modulus in liquid (GPa) 14.0
Thermal linear expansion coefficient (1/K) 0.00002
Density (kg/m?) 7500.0

Poisson’s ratio 0.3

Melting temperature, 7. (°C) 1494.4
Liquidus temperature (°C) 1494.45
Solidus temperature (°C) 1494.35
Cold surface temperature, 7,4 (°C) 1000.0
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Fig. 15—Temperatures through an infinite solidifying plate at different
solidification times compared with Boley & Weiner analytical solution.
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Fig. 16—Stresses through an infinite solidifying plate at different solidifi-

cation times compared with Boley & Weiner analytical solution.

billet-casting simulation. This demonstrates that the model
is numerically consistent and has an acceptable mesh.

XIII. APPLICATION TO BILLET CASTING

The CON2D model was next applied to simulate a plant
trial conducted at POSCO (Pohang works, South Korea'®!)
for a 120-mm-square section billet of 0.04 pct C steel cast
at 2.2 m/min, where measurements were available. The mold
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had a single linear taper of 0.785 pct/m. Details of the mater-
ial and operation conditions are given in Tables III and IV,
respectively. Two simulations were performed to predict the
temperature, stress, and deformation evolutions of the billet

METALLURGICAL AND MATERIALS TRANSACTIONS B

Table III. Material Details in Billet Plant Trial

Steel composition (wt pct) 0.04C
Liquidus temperature (°C) 1532.1
70 pct solid temperature (°C) 1525.2
90 pct solid temperature (°C) 1518.9
Solidus temperature (°C) 1510.9
Austenite — a-ferrite starting temperature (°C) 781.36
Eutectoid temperature (°C) 711.22

Table IV. Simulation Conditions in Billet Plant Trial

Billet section size (mm X mm) 120 X 120
Working mold length (mm) 700

Total mold length (mm) 800
Casting speed (m/min) 22
Mold corner radius, (mm) 4

Taper (pct m)

Time to turn on ferrostatic
pressure (S) 2.5

Mesh size (mm X mm) 0.1 X0.1to1.4 X 1.0

Number of nodes

0.785 (on each face)

(varies with section size) 7381
Number of elements

(varies with section size) 7200
Time step size (s) 0.0001 to 0.005
Pouring temperature (°C) 1555.0
Coherency temperature (°C) 1510.9
Gap tolerance, d,,;, 0.001 (0.1 pct)
Minimum gap, dyypmin (Mm) 0.012
Penetration tolerance, d,., (mm) 0.001

shell using the 2-D L-shaped domain (Figure 1(b)) and a
slice domain through the centerline of the billet face (Fig-
ure 1(c)), similar to the Boley and Weiner analytical problem.
The interfacial heat-transfer constants for both simulations
are given in Table I and were found with the help of a ded-
icated heat-transfer code, CON1D.!

The superheat-flux profile was obtained from coupled com-
putations of turbulent flow and heat transfer in a round bil-
let caster by Khodadadi et al.® for the case of a Grashof
number (Gr = gW? (TLE(T,,,,) — TLE(T,,))/v?) of 1 X 10%.
This value is the closest case to the current problem conditions,
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where the Grashof number is 2 X 107, and confirms that
natural convection is unimportant in this process. The heat
flux was calculated from the Nusselt number (Nu) and mean
liquid temperature (7},) results, given as a function of distance
below the meniscus, ¥ using their values of liquid steel con-
ductivity, k = 29.8 W/mK, mold section size, W = 200 mm,
and 33 °C superheat, except for readjusting the superheat tem-
perature difference as follows:

NUk(Tm - Tliq) ( Tpour - Tliq)Posco [49]
qsu =
P w (Tpour - Tliq)Khodadadi

where T, and Ty, are the pouring and liquidus temperatures,
respectively. The resulting superheat-flux profile is shown in
Figure 19. Note that the total heat integrated from Figure 19
over the mold surface, 48.6 kW, matches the superheat for
the current problem, (T — Tiig)pc,ve = 46 kKW.

The heat-flux and mold wall temperatures predicted by
CONZ2D along the billet-face center are shown in Figures 20
and 21, respectively. These results slightly underpredict the
measurements of thermocouples embedded in the mold wall,
which should lie almost exactly between the hot- and cold-
face temperatures.[®” The total heat extracted by the mold
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Fig. 19—Super heat flux used in CON2D for billet casting simulation.
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Fig. 20—Predicted instantaneous heat flux profiles in billet casting mold.
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(128.5 kW) is 17 pct lower than the plant measurements, based
on a heat balance of the mold cooling water (8 K temperature
rise at a 9.2 m/s slot velocity) of 154 kW.1'8! This is consistent
with underprediction of the mold temperatures.

The predicted shell growth for this CON2D simulation
is given in Figure 22, as indicated by the evolution of the
solidus and liquidus isotherms. This is compared with mea-
surements of the solid/liquid interface location, obtained
by suddenly adding FeS tracer into the liquid pool during
steady-state casting.!"® Longitudinal and transverse sections
through the billet were cut from the final product. The trans-
verse section was 285 mm from the meniscus when the FeS
tracer was added. Because FeS tracer cannot penetrate the
solid steel shell, sulfur prints of sections cut through the
fully solidified billet reveal the location of the solidification
front and shell-thickness profile at a typical instant during
the process.!'8! The CON2D predictions match along the
centerline beyond the first 80 mm below the meniscus, where
the shell remains in contact with the mold, suggesting that
the heat-transfer parameters are reasonably accurate.

The shell-surface-position profile down the centerline is
shown in Figure 23, together with the mold wall position, which
includes both the taper and the mold-distortion profile calcu-

Mold Wall Temperature by CON2D (Hot Face)

25

Thermocouple Measurements

=3
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~
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Fig. 21—Predicted mold wall temperature profiles compared with plant
measurements.
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Fig. 22—Predicted shell thickness profiles for billet casting compared with
plant measurements.
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Fig. 24—Gap evolution predicted by CON2D for the billet casting
simulation.

lated from the CON1D temperature results using Eq. [39].°"
The shell surface generally follows the mold wall with no obvi-
ous penetration, validating the contact algorithm. Note, how-
ever, that a slight gap opens up within the first 25 mm. Although
this effect is believed to be physically reasonable owing to rapid
initial shrinkage of the steel, it is exaggerated here, owing to
numerical difficulties during the initial stages of solidification.
This causes an overprediction of the drop in initial heat flux
and temperature observed in Figure 20. This drop is followed
by increased heat flux (and corresponding mold wall temper-
ature) after full contact is re-established, which has also been
observed in other measurements.””

The simulation features a detailed prediction of temperature,
shrinkage, and stress in the region of the rounded billet cor-
ner. The evolution of the increases in gap size and surface
temperature are given in Figures 24 and 25 near (20 mm) to
the centerline of the billet face and at various locations 0, 5,
10, and 15 mm from the billet corner. The corresponding
large drops in heat flux are included in Figure 20. The solidi-
fying shell quickly becomes strong enough to pull the billet
corner away from the mold wall and form a gap around the
corner region. The gap greatly decreases local heat flow in
the corner, causing the mold wall temperature to drop.

The drop in mold temperature near the corner over the
initial 80 mm is more than expected in reality, because the
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Fig. 25—Shell surface temperatures predicted for billet casting simulation.
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Fig. 26—Temperature contours at 285 mm below meniscus compared with
corresponding sulfur print from plant trial.

simple mold model of CON2D in Eq. [33] neglects heat con-
duction around the corner and along the casting direction.
Thus, these predictions are not presented. This latter
effect, which is included in CON1D,P" also contributed to
the convergence difficulties along the centerline discussed
in Figure 23. Fortunately, it has little other effect on heat
flux or shell behavior.

Figure 24 shows how a permanent gap forms after 40 mm
below the meniscus, which grows to over 0.3-mm thick by
halfway down the mold, growing little after that. Corresponding
gaps form adjacent to the corner at later times, reaching smaller
maxima partway down the mold. These gaps form because the
simple linear taper of the mold walls was insufficient to match
shrinkage of the shell. The corner effect decreases with distance
from the corner and disappears beyond 15 mm from the corner.

The corner gap and drop in heat flux cause a hot spot at the
corner region, as shown in the surface-temperature profiles of
Figure 25. The CON2D model predicts that the shell corner
reheats slightly and becomes 150 °C hotter than billet-face
center, for the conditions of this trial. The decreased heat flux
also produces less solidification in the corner, as illustrated in
Figure 26 at 285 mm below the meniscus. The predicted shell
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thinning around the corner is consistent with the plant measure-
ments from the sulfur print, as quantified in Figures 22 and 26.
The predictions here are also consistent with those of Park et
al., who modeled how increasing the billet-mold corner radius
leads to more severe hot and thin spots near the corner." This
tends to validate the CON2D model and the simple constant
interfacial heat-transfer parameters used to produce these results.
Improving the accuracy would likely require a more complex
model of gap heat transfer that considered details of surface
roughness, including differences between the center and corner.

Figure 27 shows the evolution of surface-stress components
near the centerline of the billet face. Stress normal to the
surface (x direction) is effectively equal to zero, which indicates
that the 0.785 pct/m mold taper never squeezes the billet. The
stress components perpendicular to the solidification direction
(y direction tangential to the surface and z casting direction)
are generally very similar, which matches the behavior
expected from the analytical test solution.'”! These stresses
grow slowly in tension during the period of increasing heat-
extraction rate from 20 to 100 mm below the meniscus. They
reach a maximum of almost 3 MPa due to the increase in
shell strength at lower temperature that accompanies the trans-
formation from é-ferrite to austenite. This is shown in the
through-thickness profile of these same stress components in
Figure 28(a), but is calculated with the 1-D slice domain. The
surface tensile-stress peak does not penetrate very deep, owing
to the very thin layer of material colder than 10 pct delta-
ferrite. Thus, this peak might cause very shallow fine surface
cracks, but nothing deeper.

The surface stresses in Figure 27 suddenly turn compressive
beyond 100 mm due to the sudden change in heat-extraction
rate at this distance (Figure 20). Surface compression arises
because the subsurface begins to cool and shrink faster than
the surface. This causes a corresponding increase in subsurface
tension near the solidification front that might lead to subsurface
cracks. The surface stays in compression from —4 to —6 MPa
for the remaining time in the mold.

During the time beyond 100 mm, the stress profile (Fig-
ure 28(b)) is qualitatively similar to that of the analytical
test problem, as expected. Differences arise from the vari-
ation in steel strength between the &-ferrite and austenite.
Stresses in the liquid, mushy zone, and é-ferrite are always very
small. Tensile stress increases rapidly during the phase transfor-
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Fig. 27—Surface stress histories predicted near the billet face center (2-D
L-mesh domain).
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mation, which takes place at the low end of the 6 + vy region
of Figure 28. When the o-ferrite region is thin, this tensile
stress is more likely to create strains significant to generate
cracks. These results illustrate the widely accepted knowl-
edge that surface cracks initiate near the meniscus, while
subsurface cracks form lower down.

Figures 29(a) and (b) show the different components of
strain (y direction) through the shell thickness near the billet-
face center corresponding to the stresses in Figure 28. Ther-
mal strains dominate in the solid and generate the other
strains due to the constraint of adjacent layers of steel. Small
elastic strains are generated by the mismatch of thermal
strain, although the stresses they generate may still be sig-
nificant. Inelastic strain is generated in regions of high stress,
starting in the 6 + <y region. It is high at the surface at the
top of the mold and later grows in the austenite. Note that
inelastic strains are all tensile throughout the shell. The &
and mushy zones behave elastically with very low stresses.
This is fortunate, as these phases are very weak and cannot
accommodate much inelastic strain before cracking. Flow
strain in the liquid occurs to accommodate the total strain,
which is naturally flat, owing to the constraint by the solid.

Figure 30 shows the “hoop” stress component (y direc-
tion parallel to the billet surface and perpendicular to the
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casting direction) at an off-corner location (10 mm above
the billet corner) through the shell thickness at 100, 500, and
700 mm (mold exit) below the meniscus. Stresses all behave
similarly to the corresponding locations along the billet center-
line, except that the tension and compression are lower. This is
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Fig. 32—Inelastic strain contours predicted at mold exit.

expected due to the slower cooling rates, shallower temper-
ature gradients, and higher temperatures near the corner.

Figures 31 and 32 show contours of the stress and inelas-
tic strain components perpendicular to the solidification direc-
tion superimposed on the distorted billet at the mold exit with
isotherms. The insufficient 0.785 pct/m taper of this mold is
unable to support the billet, which allows a slight bulge (0.25 mm
at the mold exit). Regions of high tensile stress and inelastic
strain are indicated at the off-corner subsurface (10 to 20 mm
from the corner and 2 to 6 mm beneath the surface).

XIV. CONCLUSIONS

A transient, two-dimensional, finite-element model has been
developed to quantify the temperature, stress, and strain dis-
tributions in the solidifying shell in the continuous casting of
steel. This is a Lagrangian approach in generalized plane strain
that reasonably predicts the 3-D stress and strain state by solving
energy- and force-balance equations within a 2-D transverse
slice domain. Superheat dissipation and ferrostatic pressure are
both taken account of through internal boundary conditions.
Unified elastic-viscoplastic constitutive models for both the
austenite and S-ferrite phases of the steel match tensile- and
creep-test data. Liquid is given physically reasonable proper-
ties, including a high viscoplastic shear rate and small yield
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stress. A robust and efficient time-integration technique, the
alternating local-global method, is adopted to integrate the
highly nonlinear constitutive equations. An efficient contact
algorithm allows the model to properly treat shell-surface inter-
action with the mold wall.

The model is validated by extensive comparisons with an
analytical solution of thermal stress in an infinite solidify-
ing plate, which justify the choice of mesh and time-step
size. The model is applied to simulate a 120-mm-square bil-
let continuously cast at 2.2 m/min, and the results compare
favorably to in-plant measurements of thermocouples embed-
ded in the mold walls, heat balance on the cooling water,
and thickness of the solidified shell.

The CON2D model is a useful tool to gain quantitative
understanding of issues pertaining to the thermal-mechanical
behavior of the solidifying shell during the continuous casting
of steel slabs and billets. It is being applied to investigate
taper in billets”!! and slabs,”” minimum shell thickness to
avoid breakouts,"*”! maximum casting speed to avoid longitu-
dinal cracks due to off-corner bulging below the mold,®® and
other phenomena.!”!
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APPENDIX A
Finite-element implementation of heat-transfer model

A. Linear Temperature Triangles

The small triangles in Figure [A1] show the constant tem-
perature-gradient triangle element used for the heat-flow
model. Temperature within an element is interpolated by the
same shape functions used to interpolate the coordinates.

3
T= ENI‘(X, NT; [AT]
i=1

The [B] matrix in global coordinate system can be obtained as

[B]:i Y27V Y3 TV Y1 T2

[A2]
20 x3 — Xy X — X3 Xy — X

where A is the area of the triangle element.

B. Conductance Matrix and Capacitance Matrix

The element conductance and capacitance matrices needed
to assemble Eq. [15] are given in Eqs. [A3] and [A4].[7*!

k, O
[K]g,=I[B]T{O k}[B]dA [A3]
po A2 11
[Cly = [IN] pc,o[N1dA = 1”; 1 2 1| [A4]
1 2
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Fig. A1—Six-node quadratic displacement triangle element with Gauss
points for stress model and corresponding 4 three-node linear temperature
triangle elements.

where k, is the average conductivity of the three nodal values
within each element and c,, is the effective specific heat
within the element, given by Eq. [16].

APPENDIX B
Finite-element implementation of stress model

A. Linear Strain Elements

Figure [A1] shows the six-node linear-strain isoparamet-
ric triangle finite element used in this work. Global coordi-
nates and displacements within each element are interpolated
from its nodal values by

BRI B
y =LO N; 1 U
6 [N, 0 .
BRI
v =L0 N\ v
where the shape functions in natural local coordinates are
[Nicio. 6l = [sQs—Dt2t—1)rQr—1) 4st 4tr 4sr]
r=1—s—1t [B3]

B. Generalized Plane Strain Formulation

The three unknowns, a, b, and ¢, which describe the out-
of-plane strain in Eq. [5], are assembled into the finite-element
equations to be solved concurrently within the in-plane displace-
ments. The displacement vector is therefore

T

T
{5}={u}abc [B4]
15X1 12X1

T
{M}I{ul .o UV ...V6}
12X1
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where



The strain-displacement relationship is
{Asx Age, Ag, ASZ}T = [4131’5} {8} [B5]

The [B'] for matrix generalized plane strain is given as

EANKY

[ B’ } = [B6]
4x15 0
{mn} 1 x vy
where
[oN dN, ]
8 | L. 2t 0 0
0x ax
IN, dNg
3x12 dy ay
aN,; dNg  ON, 9N,
| dy ady dx dx |
The elastic stress-strain relation is
AO'X ASx AST A8171)(
Ao, _ D] Ae, _ Aey _ Agy,
Ao, Ag,, 0 Agy,
Ao, Aeg, Agp Ag,,
[B7]

The deviatoric stress vector is

ot o e ot )

where (B8]

g, =0, t a, + o,

The von-Mises or “equivalent” stress is

7= \/ % (0—0,? + (@,—0)* + (0.~0,)* + 272) [BY]

C. Global Stiffness Matrix and Force Vectors
The global stiffness matrix [K], and force vectors, {AF, },

{AF, }, {F}}, and {F,}, in Eq. [21] are assembled from
the local stiffness matrix and force vectors of each element

at the current time step ¢ + Atz

(K] = Zl [, (1BL.) DB, dA [B10]
(Fy) = E b, @) Ly [B11]
(AF,) = 21 J, (1BLYID1AE" dA (B12]
8F) = 3 | (BL)IDIA" s [B13)
(F) = El J, (BL) DI an (B14]
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Integrals are evaluated numerically using standard second-
order Gauss quadrature!” according to the integration sam-
pling points given in Figure 33 with a constant weighting
factor of 1/3.

NOMENCLATURE
Cp specific heat of steel (kJ/kg K)
c sign of the equivalent stress/strain
E Young’s modulus (MPa)
F, ferrostatic pressure
g gravity acceleration
H enthalpy of steel (kJ/kg)
k conductivity of steel (W/m K)
Nu Nusselt number
q heat flux
T temperature (°C)
TLE thermal linear expansion
ATy brittle temperature range
u displacement (m)
Ve casting speed
4 mold section size
b body force vector
[C] capacitance matrix
[D],D elasticity matrix/tensor
{(Fp} force vector due to ferrostatic pressure
{F,} heat flow load vector
[K] conductance matrix for heat-transfer model;
stiffness matrix for stress model
n unit vector normal to the mold wall surface
{0} heat generation vector
g, {&} strain tensor/vector
Ag estimated of total strain increment
g, {o} stress tensor/vector
', {o}  deviatoric stress tensor/vector

g*, {o}* stress tensor/vector without inelastic increa-
ment components

o thermal expansion coefficient

e strain

€ equivalent strain

7 lame constant

v Poisson’s ratio

p density of steel (kg/m?)

o equivalent stress

Oyield yield stress (MPa)
Subscripts

flow flow

in inelastic

th thermal

by component along x direction

y component along y direction

Y austenite

0 o-ferrite

€ elastic
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