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A mathematical model has been developed to compute the thermomechanical state of the shell of 
continuously cast steels in a round billet casting mold. The model determines the temperature distri- 
butions, the stresses in and the gap between the casting mold and the solidifying strand. The effect 
of variations in steel carbon content and mold taper on the thermal, displacement, and stress fields 
are examined. Comparisons with available experimental observations verify the predictions of the 
model. The model demonstrates that the thermal shrinkage associated with the phase change from 
delta-ferrite to austenite in 0.1 pct C steel accounts for the decreased heat transfer observed in that 
alloy, as well as its susceptibility to cracking. 

I. INTRODUCTION 

CONTINUOUS casting now accounts for over 50 pct of 
domestic steel production in the United States and over 
90 pct of the steel production in Japan. The conversion to 
continuous casting from ingot casting has been driven by 
the improved yield, thermal efficiency, and higher quality 
available in the newer process. To help achieve these gains, 
the process has been mathematically modeled to increase 
the understanding of the roles of important variables in the 
process, improve design of continuous casting machines, 
and eliminate casting defects. 

The defects to which continuously cast billets are suscep- 
tible include longitudinal and transverse surface cracks and 
subsurface cracks. Although the specifics depend on both 
the defect and the casting system, their primary cause is the 
interaction between heat transfer in the mold and the solidi- 
fication and concomitant shrinkage of the billet. 

Over the years, many mathematical models have been 
developed to help determine the origin of, and assess means 
for controlling, these defects. The aspect of the problem 
which makes building a mathematical model for the heat 
transfer difficult is that the effective heat transfer between 
the billet and the mold is largely determined by the size of 
the air gap between them, caused by the thermal distortion 
of both the billet and the mold. Because the size of the gap 
depends on the respective temperature distributions, the 
formulations for the problems of air gap formation and tem- 
perature are coupled. 

To overcome this problem, a number of researchers have 
estimated values for the heat transfer coefficients. It is com- 
mon practice to divide the billet into two or more heat 
transfer zones. The upper zone has a high heat transfer co- 
efficient to characterize the good thermal contact between 
the billet and the mold, perhaps mediated by a mold lubri- 
cant or flux. The lower region of the mold is characterized 
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by smaller heat transfer coefficients, associated with the air 
gap. The magnitude and locations of these regions vary 
from author to author, t~'zl based on experimental observa- 
tions and/or educated guesses. 

A second popular means for determining the heat transfer 
characteristics is to analyze experimental data gathered in 
plant trials, t3'41 Typically, thermocouples or pairs of thermo- 
couples are placed in the mold at various locations and their 
response is used to determine the temperature distribution 
in the mold and, in particular, to compute the heat flux on 
the inside face of the mold. These heat fluxes are then in- 
corporated as boundary conditions for the heat flow prob- 
lem in the continuously cast strand. 

The difficulty in applying either of the above methods 
arises when one wishes to use the mathematical model to 
assess the importance of changes in the process variables on 
the solidification characteristics of the billet. It is not easy 
to alter the estimated heat transfer coefficients and be confi- 
dent that the new estimates truly represent what would hap- 
pen in the new configuration. Similarly, the heat fluxes 
measured under one set of experimental conditions may not 
be appropriate for the new set of experimental conditions, 
but it is difficult to tell a priori  how large or how small the 
error introduced by using them will be. 

In a few analyses I5'6~ the air gap was calculated by com- 
bining thermal and stress analysis, following the progress 
of a two-dimensional slice of the strand down through the 
mold. Grill et al. [sJ used experimental data to estimate the 
heat flow at the mid-face of a slab, and calculated gap for- 
mation at its comers. Kristiansson t61 simulated a billet cast- 
ing, using stress analysis to determine the size of the shell/ 
mold gap over the entire periphery of the strand. In the lat- 
ter analysis, the gap computed by the stress program at the 
previous step was used as a boundary condition for the next 
step of the heat flow model. Although this approach repre- 
sents a marked improvement over previous models, neither 
analysis considered explicitly the heat flow or displacement 
of the casting mold, which has been shown by Samarasekera 
et al. [4] to have a significant effect on the solution. 

In the present work, an attempt is made to improve this 
situation by developing models to compute temperature dis- 
tributions in both the billet and the mold. These models also 
directly compute the air gap, via stress analysis, to obtain 
a self-consistent solution. The analysis has been restricted 
thus far to round castings to maintain the economy of a two- 
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dimensional axisymmetric formulation, and by the assump- 
tion of steady state, again to reduce computation. This last 
restriction obviates the study of some important phenomena, 
such as meniscus and oscillation mark formation. Never- 
theless, many of the remaining aspects of continuous cast- 
ing can and have been retained. The procedures for the 
analysis are described in the next section. 

II. MODEL DESCRIPTION 

A. Overview 

The model for heat transfer between the mold and strand 
is characterized by heat transfer coefficients across the air 
gap. These heat transfer coefficients, described in detail in 
a later section, include heat transferred by both conduction 
and radiation, as they depend upon the temperatures of both 
the ingot and the mold, the size of the air gap, the conduc- 
tivity of the gases in the gap, and an assumed contact resis- 
tance when the steel and mold touch near the meniscus. 
The change from direct contact to the development of a gap 
is determined in the analysis by calculating the temperature, 
displacement, and stress fields in the billet and the mold. 

The following strategy was used to obtain the solution: 

BEGIN 

(a) build a finite element model of the casting and mold; 
(b) compute a velocity field in the billet; 
(c) define a starting set of heat transfer coefficients; 

ELASTIC CYCLE 

(d) compute temperatures in both the mold and the 
strand from the velocity solution and heat transfer 
coefficients; 

(e) compute elastic stress solutions for the mold and 
solid portion of the strand from the thermal solution; 

(f) recompute heat transfer coefficients from the gaps 
computed in stress solution; 

(g) cycle through steps (d) through (f) until a self- 
consistent solution is found; 

The finite element method (FEM) was chosen for this 
analysis owing to the availability of commercial computer 
codes for the velocity, thermal and stress analyses. The 
problem geometry and boundary conditions are shown in 
Figures l(a) and (b). The velocity and thermal analyses 
were carded out with FIDAP, I71 and the stress analysis was 
done with NIKE2D ts~ modified to run on a UNIX-based 
system. The FEM mesh was built using FIMESH, the mesh 
generator in FIDAP, with four-noded linear isoparametric 
quadrilateral elements. 

A series of translator programs were written to pass the 
mesh and thermal solution to NIKE2D for stress analysis 
and to recompute heat transfer coefficients from the stress 
solution and pass them back to FIDAP. Details of the veloc- 
ity, thermal and stress solutions are given below. In all cases, 
the physical properties of the mater ia ls - -speci f ic  heat, 
thermal conductivity, elastic modulus, strain dependent flow 
stress, and thermal expansion coefficient--were tempera- 
ture dependent, and the values used are tabulated in Ap- 
pendix B. The latent heat of fusion was distributed over the 
freezing range as an additional specific heat. 

B. Velocity Solution 

The velocities were obtained by solving the problem 
posed in Figure l(a). On the upper surface of the billet, the 
downward inlet velocity was specified as a parabolic func- 
tion over the narrow region corresponding to the downspout, 
and the normal velocity was set to zero on the remainder of 
the free surface. The radial velocity was set to zero on the 
centerline. On the vertical surface of the billet, the axial 
velocity was set to the casting speed. The outlet velocity 
was unspecified, which corresponds to a shear stress-free 
boundary in the FEM, and allows mass to be conserved in 
the strand. 

The velocity distribution was computed using FIDAP, 
ignoring all of the inertial terms in the momentum transport 
equations. Although it is well known that these inertial terms 
are important, and that the flow in the liquid portion of the 
billet is turbulent, it has also been repeatedly shown that in 
most cases the details of the flow field in the liquid are not 
important to the overall heat transfer and that the enhanced 
thermal dissipation due to convection can be adequately ac- 

t9~ An counted for by an increased thermal conductivity, y 
hope of examining shell erosion by the incoming stream is 
lost, of course. 

ELASTIC-PLASTIC CYCLE 

(h) compute an elastic-plastic stress solution beginning 
with the latest converged temperature/stress solution; 

(i) recompute the heat transfer coefficients from the 
elastic-plastic solution; 

(j) compute a new thermal solution; and 
(k) cycle through steps (h) through (j) until the final 

self-consistent solution is obtained. 

Each of the steps in the above strategy is discussed in more 
detail below. Since the analysis to date has been done only 
for axisymmetric billets, the model description is given in 
that context. 
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C. Thermal Solution 

The FEM form of the energy equation after the transient 
terms have been removed is given by 

([A(U)] + [K(T)]){T} = {F(T)} [1] 

where [A(U)] represents the contributions to the global con- 
ductance matrix from advection of energy 
(convective transport) 

[K(T)] represents the contributions to the global con- 
ductance matrix from diffusion of energy 
(conduction) 

{F(T)} represents the forcing function for energy 
(heat fluxes, convection to the environment, 
etc.) 

{T} is the vector of nodal temperatures 
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(a) (b) 

Fig. 1--(a)  Boundary conditions for the velocity problem. (b) Boundary conditions for the temperature problem. 

The FEM formulations for [A], [K], and {F} can be found 
in Reference 7. The dependence of [K] and {F} on tempera- 
ture makes the problem nonlinear, so that an iterative solu- 
tion is required. It was found that the large discontinuity in 
specific heat associated with the latent heat of fusion could 
lead to convergence difficulties, requiring the use of care- 
fully controlled solution procedures. 

Two of the solution strategies available in FIDAP were 
used in sequence: successive substitution with relaxation, 
and a variant of Newton's method. After iteration i, Eq. [1] 
can be written as 

([A(U)] + [K(T,)]){T*} = {F(T,)} [2] 

where T, is the solution vector at iteration i, and {T*} is ob- 
tained by solving Eq. [2]. In the successive substitution 
method with relaxation, {T,+l} is given by 

{Tt+l} = o~{L } --~ (1 - c0{T*} [3] 

where a is an "acceleration" or "relaxation" factor. The 
convergence rate was found to be highly dependent on the 
choice of a,  as shown in Figure 2. 

In Newton's method, the residual error after iteration i is 
used to select the next estimate for {T,+ L}. After iteration i, 
the residual error {R, } is given by 

{R,} = ([A(U) + [K(T,)]){T,} - {F(T,)} [41 

The estimate for {T,+I} is then 

{T,+I} = or{T,} + (1 - or)({7,} - [J(T,)]-t{R,}) 

[5] 
where J = O{R}/O{T} is the Jacobian for the system of 
equations. The details for this method, including efficient 
algorithms for computing the Jacobian, are described in 
Reference 7. Converged solutions were achieved in the 
present analysis by using successive substitution for the 
first five iterations, followed by a variation on the Newton 
method, called the "Quasi-Newton" method in HDAP, for 
subsequent iterations, keeping a = 0.5 throughout. As 
seen in Figure 2, this scheme provided the fastest conver- 
gence of all the methods compared in this study. 

The first simulation was started with {T} = 0 everywhere, 
and 13 iterations were required to reach convergence. For 
this first run, all the heat transfer coefficients were chosen 
to be the value associated with direct contact, discussed in 
the next section. Subsequent simulations (using new heat 
transfer coefficients) were restarted from the earlier solu- 
tion, and typically took six or seven iterations to converge. 
The solution was accepted when the relative errors in both 
the temperatures and the residuals were less than 10 -4 (see 
Reference 7). 

D. Elastic Stress Analysis 

The temperatures calculated by FIDAP were then used as 
input to NIKE2D to perform separate elastic stress analyses 
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Fig. 2--Relative error in temperature vs iteration for various solution 
strategies. Solution was accepted when the relative error was less than 
0.0001. (S.S. = successive substitution; Q.N. = Quasi-Newton; a.f. = 
acceleration factor) 

on the mold and solid shell. The nonuniform temperature 
distribution causes both the mold and the shell to distort 
from their reference configurations, leading to the air gap. 
In the present analysis, thermal distortion of the casting 
mold was computed via elastic stress analysis, using the 
boundary conditions indicated in Figure 3(a). The mold 
tube was left essentially unconstrained along its length from 
the small strains produced by thermal expansion and con- 
traction, corresponding to the constraint condition imposed 
on a mold clamped in place on the mold table, t]~ 

Figure 3(b) also indicates that the mesh within the strand 
was altered for the stress analysis by stripping away all of 

Uz=0 

Pressure 
pgz 

~ Distorted shape 
J of mold I 

> Gap Elements 

11 with liqmd r ] 
elements removed r I 

k_J 

Face remains planar 

(a) (b) (c) 

Fig. 3 -  (a) Upper comer of mold constrained, corresponding to clamp- 
ing on mold table. (b) Juxtaposition of distorted mold and shell in its 
original location, showing ferrostatic head boundary condition. (c) Dis- 
torted mold and shell in its corrected reference configuration. 

the elements which were entirely liquid, and replacing them 
with a pressure corresponding to the metallostatic head. Be- 
cause liquid steel at the meniscus is always free to run out 
to the mold, the reference configuration for the strand must 
be based on the distorted shape of the mold. To achieve 
this, an elastic stress analysis was first performed for the 
mold, then all of the remaining nodes in the shell were 
moved outward by the calculated amount of distortion in 
the mold at the meniscus, to establish the initial state shown 
in Figure 3(c). The effect of this movement on the thermal 
solution is insignificant because the displacement is so 
small; but it is crucial to the stress solution, because it en- 
sures that the first material to solidify will be stress free. 
The distorted shape of the shell was then computed, using 
temperature dependent elastic moduli, but neglecting plas- 
tic deformation. 

E. Adaptive Refinement of Heat Transfer Coefficients 

New estimates for the air gaps were obtained from the 
displacement solutions for the mold and shell. The local 
heat transfer coefficient, h, was assumed to be related to 
the gap by t51 

h = gg/gap + hra d [6] 

where Kg is the thermal conductivity of the gap medium, 
gap is the thickness of the gap, and hra d is the contribution 
from radiation. This equation was developed specifically 
to simulate volatile lubricants such as rapeseed oil. Details 
regarding the evaluation of Kg are given in Appendix A. 
The radiation term was computed assuming emissivities of 
0.8 for both surfaces and accounts for less than 5 pct of the 
total h. If the value of h computed from Eq. [6] exceeded 
the value associated with direct contact, it was replaced by 
that value. The h for direct contact was taken to be 6 x 
10 .3 W/(mm 2 K). Discussion of the determination of this 
value is given in the Results section. This corresponds to a 
gap of approximately 0.0125 mm, depending on the gap 
temperatures. 

The new heat transfer coefficients were then reinserted 
into the thermal analysis, and "cycles" of heat transfer/ 
stress analysis were repeated until the gaps stopped chang- 
ing within the following tolerance: 

~ all~agaps (gapo]d -- gapnew) 2 
< 0.01 [7] 

gap ncw 
all gaps 

If the most recently computed gaps were entered directly 
in Eq. [6], it was found that the succession of computed gaps 
did not converge. Accordingly, the most recently computed 
gaps were "relaxed" to obtain more stable estimates of the 
gaps for the next iteration, viz., 

gapest = otggaplast 4- (1 -- Otg)gapnew [81 

where ag was 0.8 for most analyses. Using this method, a fully 
converged solution was typically achieved after 8 cycles. 

F. Elastic-Plastic Stress Analysis 

After convergence was achieved using elastic stress analy- 
ses for the shell, the procedure described above was redone, 
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treating the shell as an elastic-plastic material. This phase of 
the analysis typically required four additional cycles, using 
the same convergence criterion (Eq. [7]). Since the com- 
puted stresses in the mold were less than the yield point 
everywhere, except within a 2-mm radius semi-circle of 
the meniscus, the elastic solution was considered to be ac- 
ceptable for the mold. It was found that the gap was rela- 
tively insensitive to the stress state in the billet, because 
the displacements are largely driven by thermal strains. 
Thus, the elastic solution was a good starting point for the 
elastic-plastic analysis of the shell. 

In addition to the final temperatures themselves, the prior 
history of thermal loading is known to have an important 
influence on the resultant stress state, t"j The thermal load 
history of the strand was obtained by tracking the tempera- 
ture of each node as it moved down the casting. The thermal 
load associated with the temperature change relative to the 
reference temperature (defined to be the solidus) was ap- 
plied incrementally over 32 load steps. At each load step, 
an iterative solution was performed using the incremental 
strain method and a Quasi-Newton updating procedure, t81 
typically taking four to seven iterations at each load step. 
Example thermal load histories at several locations in the 
strand are shown in Figure 4. 

The mechanical properties used in the model, tabulated in 
Appendix B, were obtained from Wray. t~21 The yield stress 
and elastic modulus were calculated from the flow stress data 
using an assumed yield strain of 0.1 pct. Flow stress data 
were chosen at a strain rate of 4 • 10 -4 s -1. This value was 
estimated a p o s t e o r i  from the computed strains, and is simi- 
lar to the strain rates used by other researchers. I~31 

Experimental data above 1200 ~ were not available, lead- 
ing us to use the following estimates. From 1200 ~ to 40 ~ 
below the solidus, the exponential extrapolation for flow 
stress at different strains suggested by Wray II21 was used to 
define plastic strain as a function of flow stress, tempera- 
ture, and strain. From 40 ~ below the solidus to the liq- 
uidus, the exponential extrapolation was reduced in 2 linear 

stages by multiplying by a factor which varied from 1 at 
40 ~ below the solidus to 0.1 at the solidus and to 0.01 at 
the liquidus. This temperature range corresponds to a region 
of greatly reduced ductility, with rupture strains between 
0.1 pct and 0.3 pct. tl3~ 

This procedure is somewhat arbitrary but it was found to 
remove effectively the load bearing ability of the steel in 
the mushy zone without unduly affecting convergence of 
the elastic-plastic solutions. The bilinear flow stress vs  total 
strain curves that were generated as a function of tempera- 
ture using the above procedure were input to the stress model 
(NIKE2D). The data are illustrated in Figure 5 for 0.7 pet 
carbon steel. 

The thermal distortion of the billet and mold were calcu- 
lated from the following equations: 

• V--/l/3 - 1 

Vref/ 

a the~ l  --  T - -  Tre  f 

~,horma, = a ~ o = a , ( r  - Tree) 

[9] 

[10] 

where Vra is the specific volume of the material at the refer- 
ence temperature, Tr~f, and V and T are the corresponding 
quantities at the present temperature. The specific volumes 
for the steels of interest (0.1 pct, 0.4 pct, and 0.7 pct C) 
were obtained from Wray, tl41 as described in Appendix B. 
In each case, the reference temperature for the shell was 
chosen to be the solidus temperature for the alloy, and for 
the grades containing less than 0.17 pct C, there is a contri- 
bution from the volume change associated with the 8-y 
phase transformation. The reference temperature for the 
copper mold was 25 ~ 

Fracture criteria are not well defined for steel near the 
solidus. It is known that most steels exhibit very low duc- 
tility, fracturing at or soon after the yield point, near the 
solidus. I~3"zSl The extent of this low ductility range is very 
dependent on the grade of steel and the concentrations 
of trace elements such as phosphorus and sulfur, but in 
many cases it extends to about 70 ~ below the solidus. 

Fig. 4--1mposed thermal load histories at selected locations in the strand. 
Fig. 5--Temperature v s  flow stress at two strains for a strain rate of 
0.0004 s -~ for 0.7 pct plain carbon steel, tj3J 
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Kristiansson, ]61 and Sorimachi and Brimacombe ~161 have 
used strain-based fracture criteria in this low ductility range, 
assuming that the material would fracture if the total me- 
chanical strain exceeded 0.3 pct. In this analysis we chose 
simply to treat the steel near the solidus temperature as a 
brittle material, identifying crack susceptible locations as 
those where a tensile principal stress exceeded the yield 
stress and the temperature was within 70 ~ of the solidus. 

Meniscus 

III. RESULTS 

The model developed in the previous section was applied 
to simulate the continuous casting of steel in several differ- 
ent billet molds where previous experimental measurements 
were available. The first of these was a round billet mold, in 
which detailed temperature measurements had been made, 
as described in a series of recent papers ItS't9'2~ by researchers 
at Mannesmann AG. This casting mold, referred to here- 
after as the Mannesmann mold, had an inside diameter of 
182.8 mm at the top, tapering to 180.6 mm at the bottom 
of its 705 mm length (1.7 pct/m), and a wall thickness of 
12 mm. Of the several grades of steel cast in the trials, the 
model was applied to the four cases of 0.1 pct C and 0.7 pet C 
cast at 25 mm/s and 50 mm/s. The FEM mesh, illustrated 
in Figure 6, contained 4526 nodes and 4360 elements in the 
billet, and 1560 nodes and 1575 elements in the mold. 

Figure 7 illustrates the phenomena which occur in the 
first 10 mm of the mold. Note that the contact zone is ex- 
tremely small, extending just a few millimeters below the 
meniscus. At high speed, there is a small extension of the 
liquidus onto the meniscus, suggesting that meniscus marks 
could form. At low speed, the calculations show that freez- 

reference: 
top of mold 

Omm 
meniscus: 

50ram I ~ 

mold thickness: 
12.0 mm 

mold taper: 
1.7% per m 

__ mold length: 
I 705.0 narn 

cutoff: _ 
820 m m ~ L ~ .  

radius: 
91.4 mm 

Fig. 6 - -  Dimensions and selected portions of the finite element mesh for 
the Mannesmann mold. 

Liquidus 

" R  

Z 

Solidu 

Gap 

Fig. 7 - -  Solidus and liquidus contours within 10 mm of the meniscus for 
0.7 pct carbon steel. (Radial displacements of the mold and the shell have 
been multiplied by a factor of 10.) 

ing over the meniscus is much more extensive, implying that 
much deeper meniscus marks are likely to form, as is often 
observed at lower speeds. 

Figure 8 shows comparisons of computed and measured 
temperatures at two depths into the mold wall along its 
length. The agreement between the computed and experi- 
mentally observed results is remarkably good. The magnitude 
and location of the peak temperatures, as well as the mild 
upward trend of temperatures toward the mold exit are all 
well predicted. The increase in mold wall temperature at the 
exit is due to the mold taper, as can be seen from the com- 
puted gap profile given in Figure 9. Separate calculations 
were performed assuming both h = 0.003 W/(mm z K) and 
h = 0.006 W/(mm 2 K) in the contact region. These values 
were chosen to cover the range of contact heat transfer co- 
efficients that have been reported in the literature, all rang- 

[621] 2 [22] ing between about 0.0025 ' to 0.006W/(mm K). There 
was little difference in the computed temperature profiles for 
0.1 pet C steel. However, when h = 0.003W/(mm 2 K) for 
0.7 pct C steel, the reduced heat fluxes from the billet led to 
the prediction that the shell would sieze against the mold 
wall at the mold exit, contrary to experimental observation, 
while simulations using the higher value did not predict re- 

= 0.006 W/(mm K) was adopted for the contact. Hence, h 2 
rest of the calculations described in this paper. Figure 10 
shows the computed average heat fluxes at different casting 
speeds compared to measured values reported by Dubendorf 
et al. t~sl The computed values agree very well for 0.7 pct C 
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Fig. 9 - - T h e  computed gap width profile for 0.1 pct C steel cast in the 
Mannesmann mold. 

steel and are about 10 pct too low for 0.1 pct C steel. The 
trends are quite similar, however. 

The model was next applied to examine several cases in 
the literature where thermal data had been obtained during 
casting of square billets. Thus, a measure of the applicability 
of axisymmetric models to other geometries could be ob- 
tained. Two mold geometries were examined. The first was 
based on a square billet mold described by Brimacombe 
et al. ,uo] designated mold H142 in their paper. The axisym- 
metric idealization of this mold had an inside diameter of 
111 mm, wall thickness of 9.53 mm, and length of 736 mm 
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Fig. 1 0 - - T h e  average water side heat flux from the Mannesmann mold 
v s  casting speed. 

and is hereafter referred to as the H142 mold. Casting 
was modeled for several grades (0.1 pct C, 0.4 pct C, and 
0.7 pct C) in this mold, using a casting speed of 50.8 mm/s 
and considering mold tapers of both zero (untapered H142) 
and 0.6 pct/m (tapered H142). Results from these simula- 
tions are compared below to data presented in References 4 
and 10. 

The third mold, the Singh mold, was based on that used 
by Singh and Blazek, TM having inside diameter of 93.6 mm, 
wall thickness of 5 mm, and length 425 mm. Singh and 
Blazek's mold was actually thicker than 5 mm, but the water 
passages were located at this distance from the hot face. 
Numerical experiments showed relatively little sensitivity of 
the displacement solution to mold thickness. Because the 
mold used in the experiments was untapered, this mold was 
considered only in untapered form. Simulations were per- 
formed using the same grades as above, but with a casting 
speed of 21.8 mm/s, corresponding to the speed used in the 
experiments. Selected results are compared below to data 
presented in Reference 3. The FEM mesh for all of  the 
square mold cases had the same number of nodes and ele- 
ments as used in the Mannesmann mold. 

In Figure 11, computed temperatures at 3.2 mm from the 
cold face of the tapered H142 mold, casting 0.4 pct C steel, 
are shown in comparison to experimental measurements by 
Samarasekera et al.,I4] in a square mold. The comers of a 
square billet shrink a great deal more than the mid faces 
which remain close to the mold, leading to the differences 
in temperature found at these two locations. In contrast, the 
round billet shrinks uniformly, and thus one might expect 
the values computed for the round to lie between the off- 
comer and mid-face measurements. In fact, the computed 
values lie very close to the arithmetic mean of the measure- 
ments in those two locations, except at the meniscus, where 
the computed value is somewhat low. 

Figures 12 and 13 show computed water-side heat fluxes 
in the Singh mold for 0.1 pct C and 0.4 pct C steels com- 
pared to corresponding data reported by Singh and Blazek.[3l 
Although the calculations show a decrease in heat flux for 
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0.1 pct C steel compared to 0.4 pct C, the difference is less 
than was observed in the experiments. The peak flux is 
somewhat lower, and the peak is somewhat sharper in the 
calculations than in the experiments. Similar differences 
between rounds and squares have been observed by Nilsson 
et al. ,[20) who reported much larger average heat fluxes and 
more peaked profiles, in comparison to those found in 
square billets. Thus, we attribute the discrepancies between 
the calculations and the experiments more to differences in 
geometry, rather than differences in phenomenology. 

The lower heat flux found in 0.1 pct C steel compared to 
other grades has been associated with the poor surface qual- 
ity and increased cracking tendency of this grade. [3'14'22'23] 
This phenomenon is usually explained as being due to the 
significant volume shrinkage accompanying the 8-7 phase 
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transformation experienced by 0.1 pct C steel just after freez- 
ing. This enters the model through the linear thermal expan- 
sion coefficient, which is markedly different for 0.1 pct C 
compared to 0.4 pct C and 0.7 pct C (see Figure 14). Al- 
though 0.4 pct C steel also undergoes the 8-'y phase trans- 
formation, it does so at just 30 pct solid, and hence does not 
contribute to billet shrinkage in the model. 

A. Effect of Mold Taper 

As indicated in the study of industrial practices conducted 
by Brimacombe et al. ,u0] it is common practice to taper billet 
molds to attempt to compensate for gap formation. The de- 
sign of mold taper represents one of the instances where a 
reliable mathematical analysis would offer an attractive 
alternative to an expensive experimental program. Billet 
mold taper design has sometimes been done by examining 
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heat flux measurements on a mold with one taper, inferring 
the gap distribution, and adding or subtracting taper to 
specify a new mold. r23'241 Although the distorted mold is 
certain to be affected by the new taper, it is unlikely to be 
simply additive. 

The effect of mold taper on computed air gap size in the 
H142 mold is shown in Figure 15. The main difference 
found between the mold with 0.6 pct/m taper and the un- 
tapered mold was that, beginning about 200 mm below the 
meniscus, the gaps become essentially constant for the tapered 
mold, while they continue to increase for the untapered 
mold. Figure 16 illustrates the net result of the changes in 
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heatflux due to mold taper and the mold distortion along 
its length for two different grades. In both cases, the maxi- 
mum displacement is unaffected by taper because the peak 
flux occurs close to the contact region. Taper mainly changes 
the shape of the profile below this region. 

The model indicates that the relationship between the gap 
size and mold taper is complex. Both mold distortion and 
shell shrinkage are significantly greater in the tapered mold. 
Hence, increases in mold taper produce less than propor- 
tional decreases in gap size and increases in heat flow. 
Because of this, it is not possible to obtain the gap profile 
for the tapered mold by simply subtracting the taper from 
the gap profile calculated using the untapered mold. This 
finding has important implications for mathematical analy- 

ses in which the air gap and temperature distribution are not 
coupled, and for cases where one wishes to extrapolate from 
one set of experimental results to other casting conditions. 

B. Stress and Fracture 

Another interesting result comes from examination of the 
computed stresses for 0.1 pct C and 0.7 pct C steels. In all 
cases, the largest tensile stress was the hoop stress, indicat- 
ing that if cracks were to form they would be in the longitu- 
dinal direction. Figure 17 shows the computed hoop stresses 
and temperatures for both 0.1 pct C and 0.7 pct C cast in 
the Mannesmann mold. It can be seen that the tensile hoop 
stress in the crack-susceptible region is much larger for 
0.1 pct C, indicating that this grade would be much more 
likely to crack than 0.7 pct C. These predictions agree quite 
well with experimental observations, t25'261 Figure 17 also 
shows how the sudden change in the surface heat transfer 
coefficient at the mold exit can severely increase the stresses 
in the strand. It shows that for both 0.1 pct C and 0.7 pct C 
cracks could form 6 to 9 mm below the surface of the strand 
because of the low heat transfer coefficient used at the mold 
exit in this model. Surprisingly, the model indicated that the 
tensile stresses for 0.1 pct C in the brittle region could be 
reduced by eliminating mold taper (see Figure 17). Unfor- 
tunately, the calculated shell thickness at the mold exit de- 
creases to less than 5 mm, indicating the danger of breakout. 

IV. DISCUSSION 

A measure of the utility and accuracy of the proposed 
model for the continuous casting process is demonstrated 
by the number of important experimental observations and 
trends which have been reproduced in the calculations. Be- 
cause the physical properties and process data are entered 
into the model, and the associated temperatures and stresses 
are computed without any adjustment to improve the fit with 
experimental observations, we believe that using this method 
can greatly increase the effectiveness of mathematical models 
to improve casting process design. However, we must cau- 
tion that the model is highly dependent on the high tempera- 
ture properties of the steels and gap medium, which are 
often not known to great precision, 

The results obtained to date show excellent agreement 
with experimental results where the physics are represented 
most accurately, i.e., in round billets. There are clear limits, 
however, to the direct application of these results to square 
cross-sections. Nilsson et al. pol observed that the heat 
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fluxes from round billets are consistently greater than those 
reported from squares of similar size. Our results indicate 
that this is partly due to the much larger tapers that they used 
and partly due to geometry differences. The computed and 
measured heat flux profiles on the rounds agree well with 
each other, but are much more sharply peaked than those 
found in square billets. We conclude from this that the air 
gap formation and stress development is quite different 
in square billets than in rounds. This is consistent with the 
observation of Brimacombe et al.  tl01 that the manner in 
which the mold is constrained plays a key role in the entire 
casting process. Testing of the ability of the model to pre- 
dict three-dimensional aspects of the problem must await 
the extension of this work to three dimensions. 

There remain a number of phenomena in continuous 
casting which cannot be evaluated with the present model. 
Oscillation marks and meniscus marks could not be pre- 
dicted because they are associated with transient aspects 
of the process, not included in the model. The results in the 

example problem suggest that meniscus marks would form, 
because the computed liquidus does extend onto the menis- 
cus (see Figure 7). This would lead to periodic freezing and 
runover, which produce surface depressions by the mecha- 
nism suggested by Tomono et al. [27] Similarly, periodic mold 
oscillation also produces surface depressions, as described 
by Samarasekera et al. t41 In the latter paper, the surface 
defects were shown to play an important role in the local 
heat transfer, and thus would have to be modeled in a more 
complete analysis of the casting process. 

In a similar vein, there are a host of important phenomena 
found in billet casting which originate in the three-dimensional 
aspects of production casters. Among these are the effects 
associated with the corners in square molds, where many 
problems relating to internal cracking and surface defects 
begin. Also, most casters now used curved molds to elimi- 
nate the requirement for bending the strand, which results 
in different thermal behavior at the curved faces than at the 
flat faces. 
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The present model for fluid flow is quite crude, and must 
be improved to examine the details of the flow patterns in 
the liquid associated with the incoming stream. In particular, 
an improved model could address phenomena such as shell 
erosion, white-band formation due to fluid flow, and electro- 

, �9 12sl n,, d magnetic stirring. The work of Figueira and SzeKely ,~,, 
Spitzer et al. t29] provides confidence that the techniques 
exist to include this aspect of the process. Extension of the 
model to examine these effects would certainly bring about 
a much heavier computational load. However, the results 
achieved to date suggest that the exercise would be fruitful. 

V. CONCLUSIONS 

A mathematical model has been developed to analyze 
heat transfer and stress development in the mold region of 
round continuous casters. The model uses both thermal and 
stress analysis to derive a self-consistent solution for the 
temperature distributions in the strand and mold, along with 
the size of the gap between the shell and mold formed by 
thermal distortion. The model predictions have been found 
to agree very well with available experimental data for 
round casters. Specifically: 

1. The heat flux curve for round casters has a high peak in 
the vicinity of the meniscus which subsequently drops 
abruptly due to rapid formation of an air gap. In molds 
with high taper, the curve then rises toward the mold 
exit, while with low taper, it decreases slowly toward 
the mold exit. 

2. The physical properties of 0.1 pct C steel, particularly 
the volume shrinkage associated with the delta-ferrite to 
austenite phase transformation, are responsible for the 
reduced heat fluxes found when casting this grade. 

3. At the same time, the resultant stress state accounts for 
the greater propensity for 0.1 pct C to develop longitudi- 
nal cracks, in comparison to other grades. 

4. Higher tapers produce higher heat fluxes, but the corre- 
spondence is not directly proportional. 

5. Round billets and square billets behave very differently 
in several important respects that may have important 
implications on quality. 

The results of this work have shown that the interaction 
between mold taper, mold distortion, and air gap formation 
has an important effect on heat transfer in a continuous billet 
casting machine, and can be examined in a comprehensive 
mathematical analysis. Many important phenomena remain 
to be added to the model. These include transient behavior 
relating to oscillation and meniscus mark formation, three- 
dimensional effects such as the comers of square molds and 
opposing faces in curved molds, and improved modeling of 
fluid flow. 

A P P E N D I X  A 

Thermal conductivity of gas in the shell-mold gap 

In this discussion, the gap medium is assumed to contain 
a mixture of 80 pct air and 20 pct hydrogen. Akimenko and 
Skvortsov [3~ have suggested that this composition would 
result from the use of rapeseed oil as a lubricant. According 
to Burmiester, t31] the thermal conductivity of a binary mix- 

ture of gases can be calculated from the conductivity of its 
components as follows: 

K,, = /3KL + (1 -- /3)K R [A. 11 

where Km is the conductivity of the mixture, and/3 is an 
empirical constant that varies from 0.3 to 0.8, chosen in 
this analysis to be 0.5. KL is a linear combination of the 
component conductivities: 

KL = X1K1 + X2K2, [A.2] 

where X, is mass fraction of each component in the mixture 
and K, is the thermal conductivity of each component. KR is 
a reciprocal combination of the component conductivities: 

1 = X__!~ + X__~2 [A.3] 
KR K1 /(2 

with X, and K, defined as above. 
Burmiester t3u also suggested a relationship between the 

conductivity of a gas and its absolute temperature: 

K = AV'-T 1 + GT [A.4] 
1 + S / T  

where A, G, and S depend on the gas. 
This relationship gave a good fit to the data presented in 

Ozisik I32] for both air and hydrogen. An iterative best fit 
scheme was used to find the values of A, G, and S, result- 
ing in the following relationships: 

K,i~ = v ~ ( l ' 9 0  x 10-TT+ 1.34 x 10 -3 ) [A.5] 
(1 - l l . 2 / r )  

_,-_(6.11 x 10-TT + 1.02 x 10 -2) 
KH2 V I " :  (1 + 23.2/T) [A.6] 

Table I shows the resulting temperature dependence of a 
20 pct hydrogen-air mixture. 

A P P E N D I X  B 

Physical properties of plain carbon 
steel and copper mold material 

The following tables (II through VIII) give the properties 
used in the simulations. Intermediate values were deter- 
mined using piecewise linear interpolation. N 

The average coefficients of linear thermal expansion were 
calculated using the formula: 

__~f)v3 _ 1 

athr = [B. 1 ] 
T - Tref 

Table I, Conduct iv i ty  o f  a 20 Pet Hydrogen-Air  Mixture  

Temperature (~ Conductivity (W/mK) 

200 0.054 
400 0.065 
600 0.076 
800 0.086 

1000 0.096 
1200 0.105 
1400 0.114 
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The specific volume V was calculated using the following 
equations derived from Wray: tl4[ 

V8 ..... = [8.154(C) + 0.1234 + 9.38 x 10-6 (T-  20)] 

)< 10 -3 m3/kg [B.2] 

Vv-lro, = [7.688(C) + 0.1225 + 9.45 • 10 -6 (T-  20)] 

• 10 -3 m3/kg [B.3] 

where T is temperature in ~ and C is weight percent car- 
bon in the alloy. 

In the 8-y region, the following was used: 

V ( T )  = f rV: ,  + (1 - f:,)V~ [B.4] 

where f~ is the fraction of austenite present, determined 
using the lever rule on the equilibrium phase diagram. 

Table IV. Strength of 0.1 Pct Carbon 
Steel at a Strain Rate of 4 • 10 -4 s -~t~2] 

Elastic Yield Plastic 
Temp. Modulus Stress Modulus 
(~ GPa MPa MPa 

900 20.46 20.46 1224.0 
1200 7.738 7.738 555.6 
1400 4.3 4.3 330.7 
1455 3.385 3.385 278.8 
1495 0.297 0.297 25.0 
1520 0.026 0.026 2.24 
1600 0.026 0.026 2.24 

Table V. Strength of 0.4 Pct Carbon 
Steel at a Strain Rate of 4 • 10 -4  S -1|12] 

A P P E N D I X  C 

Mold-water heat transfer coefficient 

The mold-water heat transfer coefficients used in the 
simulations are listed in Table IX. These data were calcu- 
lated using the procedure described by Rohsenow et  a1.[361 
In this procedure they suggest the use of an equation for 
fully developed forced convection nucleate boiling due to 
Thom et  al.  :]371 

Tw - Ts = O.0225e-~ [C.I] 

where Tw is the wall temperature in ~ T s is the water satu- 
ration temperature in ~ p is the water pressure in kPa; and 
qb is the boiling heat flux in W/m  2. A recent evaluation of 

Elastic Yield Plastic 
Temp. Modulus Stress Modulus 
(~ GPa MPa MPa 

900 17.2 17.2 1600.0 
1200 6.1 6.1 350.0 
1416 2.88 2.88 100.0 
1456 0.251 0.251 7.75 
1496 0.022 0.022 0.6 
1600 0.022 0.022 0.6 

correlations such as Eq. [C.1] by Guglielmini I381 showed 
that the following correlation by Stephan and Auracher [39[ 
gave a better fit to experimental data for the low pressure 
ranges one normally finds in continuous casting molds: 

1 0327 
Tw - Ts = - ' ( qb  [C.2] 

Table II. Effective Specific Heat of Plain Carbon Steel [33] 

Temperature 0.1 Pet Carbon Temperature 0.4 Pet C a r b o n  Temperature 0.7 Pet Carbon 
(~ (kJ/kgK) (~ (kJ/kgK) (~ (kJ/kgK) 

0 0.62 900 0.616 0 0.77 
900 0.62 1456 0.7 700 0.77 

1450 0.7 1473 8.89 750 2.08 
1453.4 1.2 1489 8.91 800 0.61 
1495 0.94 1506 0.75 1406 0.69 
1500 10.66 1600 0.75 1416 4.58 
1520 10.66 1476 4.58 
1530 0.75 1486 0.69 
1600 0.75 1530 0.7 

1600 0.75 

Latent heat of fusion of iron = 273 kJ/kg I33] 

Table III. Thermal Conductivity of Plain Carbon Steel Data [33] 

Temperature 0.1 Pet Carbon Temperature 0.4 Pet C a r b o n  Temperature 0.7 Pet Carbon 
(~ (W/mmK) (~ (W/mmK) (~ (W/mmK) 

0 0.03 0 0.03 0 0.03 
700 0.03 700 0.03 700 0.03 

1100 0.025 ll00 0.025 1100 0.025 
1495 0.033 1456 0.033 1406 0.033 
1530 0.027 1506 0.027 1486 0.027 
1540 0.05 1540 0.05 1540 0.05 
1600 0.05 1600 0.05 1600 0.05 

The conductivity of the liquid steel has been increased by a factor of 2 to simulate turbulent convection. 
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Table VI. Strength of 0.7 Pct Carbon 
Steel at a Strain Rate of 4 x 10 -4 S -1|12] 

Elastic Yield Plastic 
Temp. Modulus Stress Modulus 

(~ GPa MPa MPa 

900 17.763 17.763 1002.0 
1150 7.132 7.132 460.0 
1366 3.242 3.242 162.8 
1406 0.28 0.28 13.9 
1446 0.024 0.024 1.2 
1546 0.024 0.024 1.2 

Table VII. Coefficient of Linear 
Thermal Expansion of Copper t341 

Temperature Coefficient of Expansion 
(~ at Tref = 20 ~ (K) -! 

15 15.2 X 10 -6 
71 15.7 X 10 -6 

127 16.5 • 10 -6 
227 17.6 X 10 -6 
327 18.3 X 10 -6 

Table VIII. Other Physical Properties of Copper Mold t3sl 

Thermal conductivity 0.38 W/mmK 
Elastic modulus 1.1 x 105 N/mm 
Poisson's ratio 0.36 

Table IX. Mold-Water Heat Transfer 
Coefficient (Water Velocity 8 m/s) 

Mold Wall Heat Transfer 
Temperature Coefficient 

(~ (W/ram 2 K) 

0 0.03 
120 0.03 
125 0.031 
130 0.034 
135 0.041 
140 0.054 
145 0.07 
150 0.09 

where C is a pressure dependent parameter. For a pressure 
of 100 kPa, C = 3.7. The heat transfer coefficient calcu- 
lated from correlations such as [C. 1] and [C.2] can differ 
by as much as 100 pet, I381 so the effects of both correlations 
on the solution were compared. However, both resulted in 
nearly identical fluxes, and a maximum difference in peak 
water side temperature of 4 ~ This is because the air gap 
is the dominant resistance to heat flow. 
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