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Abstract

The behavior of the solidifying shell in the early stages of solidification has an important influence.
on the final quality of continuously-cast steel slabs. In order to understand the thermal and
mechanical behavior of the shell, a two-dimensional transient piecewise-coupled finite-element
model has been developed. The model simulates a transverse section of the slab as it moves
down through the mold and incorporates the effects of heat conduction, solidification, shrinkage,
turbulent fluid flow, thermal distortion of the mold and the visco-plastic behavior of the steel.
Coupling between the thermal and the mechanical model is based on the mutual dependence of
heat transfer across the interface between the shell and the mold and the size of the gap. The
effects of mold distortion and taper on the gap size are also included. The effect of fluid flow has
been incorporated via a heat flux imposed at the solid-liquid interface, which is obtained from a
separate fluid flow model. The high temperature creep and plasticity of the steel is incorporated
through a unified constitutive law defining the inelastic strain rates as a function of temperature,
time and stress state. The model can be applied to various problems in continuous casting, such
as the formation of surface defects and the design of mold taper.



Introduction

Most of world’s steel is produced by continuous casting because of the high productivity, fine
microstructure, and thermal efficiency of the process. However, problems such as cracks and

surface defects still present obstacles to achieving quality cast slabs. Most of these problems are

believed to be initiated in the mold by thermal and mechanical stresses, acting in the presence of
possible metallurgical embrittlement [1]. The present work aims to develop a comprehensive
mathematical modelling tool to aid in understanding how stress contributes to these problems and
to evaluate possible solutions.

The behavior of the thin growing shell during the early stages of solidification in the continuous
casting mold is very important to the ultimate quality of the final slab. During solidification, the
shell dissipates the superheat contained in the liquid, solidifies, cools and shrinks away from the
mold due to thermal contraction. Over most of the wide face, ferrostatic pressure maintains good
contact between the shell and the mold. However, a gap may form at the interface near the
corners and narrow face, where the heat flow is greatly reduced. The extent of the gap depends
on the strength of the shell to withstand the ferrostatic pressure pushing it outward, the casting
speed, the heat transfer characteristics of the interface between the mold and shell, and the
position of the mold wall, which is determined by the amount of mold taper and the thermal
distortion of the mold. Thus, a comprehensive model should incorporate the diverse phenomena
of fluid flow, and heat transfer in the liquid pool, heat conduction, shrinkage and stress
development within the solidifying steel shell, temperature and thermal distortion of the mold. Of
paramount importance is a realistic treatment of heat flow across the interface, which is coupled
with the shrinkage. ‘
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Figure 1. Schematic of some problems associated with continuously cast slabs.

Figure 1 illustrates some of the longitudinal defects that plague the process. Stainless steel slabs
can exhibit depressions or “gutters” just off the corner along the wide face of the slab and are
accompanied by bulging of the narrow face. The off-corner region of plain carbon steel slabs
often exhibits subsurface cracks as well. Thermal and mechanical loads imposed on the shell by
the continuous casting process are believed to initiate these defects. Mold taper is one of the
controllable process variables that may affect these problems. Too little taper can lead to low heat
transfer, bulging of the thin shell and even costly breakouts. Alternatively, too much taper may
compress and distort the shell and lead to binding in the mold. Design of mold taper is one
potential application of mathematical models.

The model presented here is part of a large project to develop and apply mathematical models to
understand and solve problems arising in the continuous casting process. In concurrent work,
separate models are being developed of turbulent fluid flow and heat transfer in the molten steel
pool [2-4], thermal distortion of the mold [5], and the heat transfer across the shell/mold interface
[6, 7]. The present model incorporates the findings and results of these models, through its
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boundary conditions. In this paper, the formulation of this model and its coupling with the other
models will be discussed, in addition to presenting sample results. .

- Previous Work

The continuous casting process has been subjected to more mathematical models than any other
process. Recent reviews of these models can be found in [8] on slab casting and [9] on billet
casting. By far the most common and widely used models are simple solidification models, based
on transient heat conduction with latent heat evolution, that can predict temperature evolution and
thickness of the solidifying shell as it moves down the caster [10-12]. Validated models are
commonly used by the steel companies as a tool for design or various trouble shooting purposes
[13, 14]. These solidification models are useful for monitoring several difficult to measure
parameters such as, shell thickness, metallurgical length, and strand surface temperature.

Comparatively fewer thermo-mechanical models of slab casting are available in the literature. The
numerical difficulties encountered in this type of models arise from several sources, all of which
require iterative refinement due to non-linearity of mechanical behavior of steel, intermittent
shell/mold contact and the coupling between the thermal and stress analysis through the air gap.
Previous thermo-mechanical models have simulated both billet casting [15-19] and slab casting
[20-30].

Several thermal stress models of billet casting have been used to investigate defects, including
those forming or initiating in the mold. Grill et al [15] initiated the thermo-mechanical modeling
of the billet strand by applying an elastic - plastic model to explain internal crack formation. The
model was improved later by Sorimachi and Brimacombe [16] incorporating improved material
property data. Kristiansson [17, 18] developed a step-wise coupled 2-D thermal and mechanical
model including the effect of changing gap size on heat transfer and creep deformation of a slice.
through the solidifying shell. It was used to understand the formation of longitudinal and sub-
surface cracks in the mold region of continuously cast billets. The results were analyzed for crack
susceptibility using a 0.2% strain based fracture criterion. Calculated results were in reasonable
agreement with observations reported in the literature. Kelly et al. [19] developed a coupled
axisymmetric thermo-mechanical model for the steel shell behavior in round billet casting molds.
Their results demonstrated that thermal shrinkage associated with the phase change from delta-
ferrite to austenite in 0.1%C steel accounts for the decreased heat transfer observed in the alloy as
well as its crack susceptibility. '

Most stress models of slab casting have been concerned with bulging below the mold, [31-35].
However, finite element thermal stress models have played an important role in understanding
behavior in the slab mold as well [21-30]. These models have been applied to various aspects of
mold design, such as mold taper [29, 30] and to understand various defects, such as off-corner
depressions [27, 29, 30] and cracks [17, 18, 21, 23, 26]. Such models are capable of predicting
stress distributions in the solidifying shell and by adopting a “critical stress” (e.g. 20 MPa for
steels above 1340 °C) [15], or a critical “strain to fracture” (e.g. 0.2% for steels above 1340 °C)
[16], it is possible to identify casting conditions that are prone to crack formation.

Grill et al. [20] developed an elasto-plastic finite element model to analyze stress distribution and
applied it to understand how to avoid comer crack formation by avoiding the tensile stresses
associated with surface reheating just below the mold. They studied the effects gap formation and
its interaction with heat flow and the effects of operating conditions such as casting speed, slab
_ size and mold taper on the shell deformation and corner rotation just below mold for predicting

breakouts and mold wear. Kinoshita et al. [21, 23] used a coupled 2-D heat conduction and
clasto-plastic stress model to investigate the temperature and stress fields in a transverse slice
through the solidifying shell in a continuous slab casting mold. The calculated heat flux and shell
thickness profiles closely resembled the experimental ones. They studied the effects of operating
variables such as slab size, withdrawal rate, mold taper, and mold flux to understand how to
avoid various crack defects in slabs.



Rammerstorfer et al. [22] used a one dimensional elastic-visco-plastic thermal stress model to
simulate the mid-width cross-section through a slab. Their results suggested that reheating of the
slab below mold should be avoided to reduce the probability of occurrence of internal cracks.
Their conclusions were based on a maximum strain level of 2-6 % at the solidification front
(mushy zone) suggested by Puringer [31].

Thermal-mechanical models of slab casting have also been used to improve mold design.
Williams et al. [36] and Lewis et al. [37] had developed an uncoupled visco-plastic model using
the “initial strain approach’ of Zienkiewicz and Cormeau [38] under plane stress conditions. They
have shown that accelerated cooling using concave mold surfaces reduce the stress levels by 15%
compared to straight molds, thereby reducing the thermal cracking. Ohnaka and Yashima [26]
studied the effects of mold taper and mold corner design on stress generation in the off-corner
region of the mold using a thermal elasto-plastic finite element model. The stress model included
ferrostatic pressure and shell/mold interaction. It was shown that shell deformation due to thermal
stress and ferrostatic pressure changes the shell-mold thermal resistance resulting in tensile
stresses that might cause longitudinal cracks down the corner. Rounded corners and taper less
than 1% were predicted to reduce the extent of off-corner hot spots and subsequent thermal

stresses.

Although successful, the models described above are not general since they ignore some of the
complex phenomena known to be present. In addition to solidification shrinkage, thermal
stresses, creep-plasticity, ferrostatic pressure and intermittent contact between the shell and mold,
the effects of non-uniform superheat dissipation via turbulent fluid flow and distortion of the mold
may play a role in defect formation. The lack of knowledge regarding the relative importance of
these other phenomena provided the motivation for the present work, in which a model has been
developed to incorporate all of these effects.

1 ri

To understand the behavior of the solidifying shell within the mold region of a continuous slab
casting machine, a two-dimensional transient step-wise coupled heat transfer and stress model,
CONCAST, has been developed. This model tracks the thermal and mechanical behavior of a
transverse slice through the continuously cast section as it moves down through the caster, so is
similar to the coupled models of previous workers such as Kristiansson [17, 18] and Kinoshita
[21, 23, 24]. Because of the two-dimensional nature of the modelling procedure, it is ideally
suited for tracking defects of a longitudinal nature such as off comner “gutters” and cracks
discussed previously. This model attempts to incorporate those phenomena important to the
formation of longitudinal defects. Mold oscillation and friction between the shell and the mold
are neglected. The present model includes separate finite element models of heat transfer and
stress generation that are coupled through the size of the interfacial gap. In addition, the effects of
superheat convection in the liquid and mold distortion are incorporated. -

Heat Transfer Model Formulation

The partial differential equation governing heat conduction in the continuously-cast
strand is: '

g+ Gyg )+ 505 = pCF+ V2 Tg) O

The symbols are defined in the nomenclature section at the end of this paper and velocity in the x
and y directions is considered in a separate model of the fluid. [3] Heat flow in the casting
direction (z dimension) is negligible relative to the heat carried by the strand movement, since the
relevant ratio, k/pCpVL , is only about 0.01. In addition, this work assumes the process is at -



steady state and aadzc;gts a Lagrangian frame of reference fixed on the strand moving at constant
velocity (so Vz = t). Equation (1) then simplifies to:
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Applying the Galerkin formulation as described in Zienkiewicz [39], to the governing
two-dimensional transient heat conduction equation (2) yields the following matrix equations:

KT} +[CHT} = (Q 3)

where [K] is the conductance matrix , [C] is the capacitance matrix including the effects of
solidification, and {Q} is the heat flow vector. Terms in these matrices were evaluated exactly
using the standard consistent formulation [40].

The latent heat of solidification is incorporated into Eq. (3) through an effective
specific heat in [C], which is evaluated using the spatial averaging technique suggested by
Lemmon [41].

N Y T

Here, H(T) is the temperature-dependent enthalpy function for the steel alloy which includes the
latent heat of solidification and is defined in terms of nodal values and element shape functions in
the same manner as temperature.

The three level time-stepping technique of Dupont [42] was employed to discretize
Eq. (3) with respect to time:

Tt+At . Tt-At )
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where T4t is the temperature for which the current equations are being solved, Tt is the
temperature at the last time step, and Tt-A! is the temperature at the time step before T*. Details of
this technique is discussed-elsewhere [40]. , -

Equations (4) and (5) are substituted into Eq. (3), rearranged and solved for the new temperatures
Tt+At ysing the standard Choleski decomposition solution routine [43]. An initial time step size
of 0.025 sec was employed, which was increased to 0.2 sec as the shell grew in thickness. This
value satisfies the following criterion for the optimum time step size, At, which was found by
comparing model predictions with an analytical solution to a test problem [29].

0.3 pCp(Ax)2
- k ©)
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Here, Ax is the size of the smallest element in the direction of heat flow and the material properties
are evaluated just below the liquidus temperature.

The finite element domain where Eq. (3) is solved in this study is shown in Figure 2, along with
the mesh of constant gradient triangular elements that was employed. One quarter of a transverse
section through the slab is considered by moving the slice through time in the z-dimension. Thus,
the model is best suited to defects that are primarily longitudinal in nature and exhibit two-fold

symmetry.
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Figure 2. Schematic of slab caster showing transverse section simulation domain

Boundary Conditions :

The boundaries on the heat transfer model domain are all insulated except for the critical surface
where heat is extracted from the shell through the interfacial flux layer, air gap and the mold. In
addition, internal boundaries were created to incorporate heat input to the inside of the shell from
the turbulent convective heat transfer from the superheated liquid steel flowing from the nozzle
(see Figure 3a). Heat transfer through the solidifying shell is shown schematically in Figure 3b.
These two boundary conditions are now discussed in greater depth.
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Figure 3a. Heat Transfer boundary conditions
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Figure 3b. Heat Transfer through the Figure 3c. Resistance model for the
solidifying shell gap heat conduction

Interface Heat Transfer Model:

In the mold region of a continuous caster, the greatest resistance to heat transfer is the interface
between the mold and the shell. Heat transfer across the interface is controlled by the thickness
and thermal properties of the materials filling the gap. Researchers such as Riboud [44], Branion
[45], Yoshida et. al [46] and others [47-49] have attempted to quantify this heat transfer. They
have found that over most of the wide face, the interface consists of thin layers of solid and liquid
mold powder of varying thickness and that heat transfer is affected by powder viscosity, feeding
rate at the meniscus (consumption), casting speed, uniformity of the shell (which depends on
grade) and the thermal conduction properties of the powder layers. In presence of an air gap (as
in the corners) the mode of heat transfer is dominated by radiation. In addition to the mold flux
properties, the size of the gap is influenced by factors such as steel shrinkage, taper and thermal
distortion of the mold, which are all included in the present model calculations.

Since ferrostatic pressure prevents shrinkage of the shell away from the mold over most of the
wide face, heat transfer is dominated by the powder properties over most of the mold. Small air
gaps may still be present, however, in the form of a contact resistance, due to the roughness of
the copper plate surface, non-uniformities in the shell surface, and incomplete wetting of the mold
flux. Experimental data is crucial in developing a reasonable model of the interface. Model
parameters in the present work are chosen so that model predictions match thermocouple
measurements in the mold wide face, for the same casting conditions. [7] :

In the off-corner regions of the wide face and along the narrow face, shell shrinkage, mold taper,
and mold distortion can significantly affect heat transfer. Thus, the model calculates the thickness
of the gap at each location and time, knowing the position of the strand surface (from the stress
model), and the position of the mold wall (from the mold taper and distortion) at that location and
time. The model then calculates heat flow at every location and time step using the same interface
model, modified by increasing the powder layer thickness (up to a specified maximum) and
assuming that air fills the remaining gap. The total size of the gap, d, is the sum of the powder
layer thickness, df, and the air gap, da. :



Heat transfer across the interface is presently calculated using the following equation:

» 1
q =(Ts-Tm)(hrad+§o+ifﬁ.+RT') )

where T is the shell temperature calculated at the previous time step (t) and Ty, is the mold wall
temperature, calculated by a separate model. [S] This model includes a series of four resistances
to heat conduction across the gap in parallel with radiation, as illustrated in Figure 3b and
described as follows:

(1)  Contact resistance between the mold and solid flux film given by

Ro =ho . ®

where hy is the contact convection coefficient at the mold surface

(2) Conduction through the solid and liquid flux film layers, (which is based on average
thermal conductivity of the mold flux and a thickness that is assumed to increase from a minimum
at the meniscus to a maximum depending on the flux viscosity, melting rate and casting speed ) is
calculated by
_dr |
Re=¢ )

where kg is the thermal conductivity of the flux and dg is the thickness of the gap that is filled with
powder. :

(3)  Conduction through the air (or gas vapor) gap, dy, if shrinkage calculations indicate one
exists, Ry, is defined in the same way as Ry in Eq. (9).

4 Contact resistance between the solid flux layer and the steel shell, (if there is no air gap)
R¢ is defined in the same way as R in Eq. (8). It varies with the shell temperature.

5) Radiative heat flow through the transparent portion of the powder, which is linearized
with the temperature difference between the two radiating surfaces by

hrad = Osp € (Ts + Tm) ( Ts2 + Tr?) (10

where Osp is the Stefan-Boltzman constant and e is the effective emissivity for radiation between
the two surfaces given by [50, 51]

2
=7 1u 3 (1)
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Note that absorption in this equation gives rise to the heat transfer mode often referred to as
radiation conduction. [52]

The present model parameters were chosen so that calculated heat flux to the wide face agreed
with experimentally-derived heat flux curves from Samarasekera [Samarasekara, 1979 #15].
Despite the lack of experimental data, it is hoped that the extrapolation of the interface model to
regions of the mold where a larger air gap exists is reasonable. Eventually this gap heat transfer
model will be replaced by a more accurate model developed by Ho [7] which is based on a larger
set of measurements, so can better account for the effect of various process parameters on the heat
flux between the shell and the mold.



TABLE 1 Constants for the Gap heat transfer model

Convection Coefficient at mold surface ho 3000 W/m2K

Conductivity of molten and solid flux k¢ 0.70 W/mK

Conductivity of air ka 0.06 W/mK

Contact convection coefficient at Terys he 1000 W/m2K

Contact convection coefficient at Teoft he 2000 W/m2K

Contact convection coefficient at Teoj he 6000 W/m2K

Contact convection coefficient at Tiiq he 20000 W/m2K

Air gap thickness da 0.0 (minimum)

Flux layer thickness d¢ 0.01 mm (minimum)
0.3 mm (maximum)

Emissivity for mold (Copper) em 0.5

Emissivity for shell (Steel) s 0.8

Refractive index T} 1.0

Absorption coefficient a 0.0 m-!

Stefan-Boltzmann constant Oosp  5.67x10-8 Wm2K-1

Super Heat Flux :

The super heat contained in the liquid steel must be removed before solidification can occur.
Since more than half of this heat is removed in the mold and its distribution is uneven, superheat
dissipation represents a significant fraction of the total heat removed by the mold in some places
[53, 54]. The dissipation of this superheat has a great influence on the development of final
microstructure, but its relative importance to growth of the shell is not clear.

To incorporate the effects of superheat, a heat flux function was defined over the entire inside

surface of shell, using data sets at several positions across the solid/liquid shell boundary as
function of distance down the mold. This heat flux data was generated with a three-dimensional,
finite volume model of turbulent fluid-flow by Huang and Thomas [4]. The heat flux is applied to
all elements in the domain containing two solid nodes and one liquid node, based on 80% solid
fraction. The heat flux to apply to these two solid nodes is extracted via interpolation of the
database values both down and across the mold face. Heat is calculated from this heat flux value
according to the time step size, the casting speed, and the distance joining these two solid nodes,
which define the solidification front. In this method, the initial temperature of the liquid is kept at

the liquidus temperature.

This "superheat flux" approach reasonably incorporates the effect of turbulent fluid flow and
convection on superheat removal. It is an improvement over the traditional "standard” methods,
in which fluid convection is simply accounted for by increasing the conductivity of the liquid by
several times. This heat flux distribution can be calculated as a function of process variables such
as, casting speed, superheat temperature difference, submergence depth, nozzle angle, steel grade
etc. In fututrﬂe, a database will be developed for a range of operating conditions to make the model
more versatile.

Mechanical Model F lati
Displacements, strains and stresses are calculated within the same domain with the same two-

dimensional mesh used in the heat transfer model. The incremental total strain vector is composed
of elastic, thermal and inelastic strains as :

(Ae) = {Aec} + {Aer} + {Agp) (12)

where {Ag,) is the elastic strain increment, {Aer} is the thermal strain increment, and {Aep} is
the inelastic strain increment incorporating both plastic and creep strain.



Thermal Strain :

The incremental thermal strains Aey are calculated from the temperatures determined by the heat
transfer model by

Aer = TLE(Tt+Av) - TLE(Tp) (13)

where thermal linear expansion (TLE) can be found from temperature dependent thermal linear
expansion coefficient data, and its corresponding reference temperature, To, via the state function:

T
TLE(T) = 1'[ or(T) dT (14)
(4]

The model also takes into account the volume change due to phase transformations in the steel.
This is accomplished by taking a weighted average of TLE based on the fraction of phases, ferrite
(ox) and austenite (), present:

TLE = (%a) TLEq + (%Y) TLEy (15)
Inclast .

In most previous continuous casting models, [32, 33] unverified models of structure-independent
plasticity or a simple creep constitutive model have been used. In many commercial packages
(e.g. ABAQUS [55]) the inelastic strains are decomposed into (i) a rate independent plastic part
and (ii) a rate dependent creep part. This unnatural scparation makes it difficult to accurately
predict the combined effect of the two. Among the various unified approaches, internal state
variables are often used to characterize resistance to plastic flow and can even accommodate
microstructural changes.[56-58] For the present model of continuous casting, the latter models
were judged to be overly complex, since the strains are very small, loading is almost monotonic
and convergence difficulties from other more important sources must be dealt with. Kozlowski et
al [59] have recently developed simplified constitutive models for inelastic strain in steel during
continuous casting simulation which match experimental tensile test and creep test data over an
appropriate wide range of strain rates and temperatures. These equations have been incorporated
into the CONCAST model.

In this model, the incremental plastic strain is characterized by
Aep = At &p(Gefr, T, HC.1Ep) (16)

where € is a scalar function dependent on the current temperature, T, the total plastic strain
accumulated to that time, €p, and the current effective stress, Ceff:

.—.% .\/ (6x-Oy)? + (Gy-67)? + (0z-0x)2 + 6(Tiy+12yzﬂ2u) a7

The present model calculations are based on plane stress. A more realistic assumption is the
generalized plane strain state which implies a constant z-strain (out-of-plane) value such that the
summation of the out-of-plane stress is minimized over the domain. This stress state is to be
included in future simulations, although it is more computationally intensive.

Applying the Galerkin finite element formulation to the mechanical problem defined by the
equilibrium equations, stress-strain and strain-displacement relations given in Appendix A, and
Eqgs. 12 - 17 results in a set of simultanecous equations:

N1



Auy .
[Ko]{ } = {Fer) + (Fep) + {Fip) (18)

Auy

to be solved at each time step. Loads arise from the thermal strains, {Fer), the inelastic strains,
{Fep), and ferrostatic pressure, (Fgp). Terms in this equation are defined in Appendix B.
Ferrostatic forces act on the inside surface of the shell as shown in Figure 4 and are applied in a
similar way as that of the superheat flux described earlier. After applying constraints for mold /
shell contact, Equation (18) is solved for the unknown incremental displacements using the
Choleski solution routine mentioned earlier. v

Boundary Condirions :

The equations described above are subject to the boundary conditions illustrated schematically in
Figure 4. for a 457.2 mm (36”) wide and 203.2 mm (8") thick slab. The two-fold symmetry
assumed in the geometry is imposed by fixing normal displacements on the symmetry planes :

t>0 x=.4572m.0<y<.0356, ux=0
t>0 y=.1016 m 0<x<.0356, uy=0 (19)
These conditions also prevent rigid body motion of the slab. Further boundary conditions are

applied when the shell contacts the mold to ensure that no portion of the shell surface penetrates
into the mold, as described in a later section. . .
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Figure 4. Stress analysis boundary conditions

Simulation Proced

A flow chart of the overall solution procedure is shown in Figure 5. The finite element form of
the heat transfer equation (Eq. 3) is solved first for the temperature distribution in the domain and
is used to calculate the temperatures needed for calculating thermal loads in the stress analysis.
The finite element form of the equilibrium equation (Eq. 18) is then solved for incremental
displacements, strains and stresses. The incremental plasticity algorithm used in this model is a
combination of the “successive elastic solution” technique of Mendelson [60] and the “initial
strain” method of Zienkiewicz and Cormeau [38]. The stress model is stepwise coupled with the



heat flow model as the solution alternates between the thermal and stress calculations as the slice
travels down through the mold in successive time steps. Numerical difficulties arise from the
many nested iterations required for convergence. Firstly, iterative checks are required to prevent
mold penetration of any node on the shell. Next, iterations are required to ensure that the plastic
strain rates are consistent at the beginning and at the end of each time step. Finally iterations are
required to ensure that the heat transfer through the gap based on the air gap calculated by the
stress model at the end of each step, should be consistent with the gap heat transfer based on the
assumed gap in the heat transfer calculations. Eventually, for generalized plane strain
calculations, iterations will be required for z-strain convergence in order to minimize the out-of-

plane stress over the entire domain.

Shell-mold contact

One of the most difficult tasks is to properly account for the restraining effect of the mold on the
thin shell deforming under the ferrostatic pressure. The interaction between the shell and the mold
not only influences the heat transfer significantly, but also affects the loading on the exterior
position of the shell. Ohnaka [26] employed a technique accounting for contact loading, which
estimates the load required to avoid penetration of mold by the shell and applies the load on the
shell at the first iteration. The procedure iterates until the penetration is negligible. The main
disadvantage of this method is that small errors in load produce surface displacements that cause
large stresses which can make the plasticity convergence difficult. A more stable method for
contact loading, used in commercial packages, is to fix the displacements of penetrating shell
surface nodes to the mold wall one at a time. This method would be prohibitively expensive for
the present problem, however, since many jterations of the mechanical model would be required

within each time step.

In the present model, penetration of mold wall by nodes on the slab surface is prevented by
creating spring elements at the surface nodes where the shell tends to penetrate the mold along the
narrow face and wide face surfaces. This is done by first finding the position of the mold wall, -
dwall, at the present time step, t+At, based on the known mold taper, d¢ap, and the mold
distortion, dy, which is calculated by a separate model [5] and stored in a data base:

dwall = diap(X,y,t) + dm(X,y,t) (20)

The size of the gap ,d, is then calculated for each shell surface node, based on the best available
estimate of the surface node displacements, ux for the narrow face and uy for the wide face.

a d = u(x,y,t) - dwan(x.y.t) ' (21)

The size of this gap, d, is also very important to the heat transfer calculations. Nodes with a
negative gap exceeding the allowable limit of & are considered to have penetrated the mold.
Normal displacements of those nodes are fixed to a new position, ug, that corresponds to the
position that the wall will have moved to by the next time step:

ug, = dwall' - ' +2 * ldyalr™" - dwan'll. 22)

This procedure of pushing the node farther away from the mold than necessary avoids the
phenomenon of nodes improperly sticking to the mold wall, when the taper exceeds the natural
shrinkage during that time step. The inaccuracy is small and occurs only at the time step when
shell / mold contact is lost at a given node.

Fixing each nodal displacement is accomplished approximately by adding a "spring elements"” to
pull that node towards its intended destination. This involves multiplying the appropriate diagonal
entry in the stiffness matrix by a large stiffness multiplier A, and setting the corresponding force
vector term to the new stiffness multiplied by us..

[Koldiag = * * [Koldiag (23)
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Figure 5. Flow chart of the overall simulation procedure




{F} = A * [Kqldiag * Yix (24)

Spring elements are used so that checks of tension or compression of the spring can easily be
made to indicate whether the node is trying to shrink or not. Nodes with springs in tension
should not have had a spring applied, so a flag is set to remove it on the next iteration.

To improve convergence of this algorithm, the model takes advantage of the knowledge that
ferrostatic pressure applied at the inner surface of the solidifying shell induces a maximum mold
penetration at the center of the wide face and that the rest of the shell behaves in a continuous
manner. Based on the relative position of the maximum bulging with respect to the center of the
face, the nodes for applying spring forces are selected as illustratedin Figure 6. Finally, a small
number of nodes, 5-10, is allowed to violate the penetration condition, in order to promote rapid
convergence. Although this method does not completely prevent mold penetration, it allows only
a little interference without greatly influencing the shell displacement. Furthermore, the
inaccuracy is readily observed when examining the results. Using this method, mold penetration

avoidance invariably required only one iteration each time step.
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Figure 6. Schematic illustration of shell-mold interaction.
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Plasticity C

After ensuring proper contact between the shell and the mold, the displacement solution is used to
calculate total effective stresses and strains. The effective stress is evaluated at each node from its
components via Eq. 17 while effective strain and effective inelastic strains were evaluated by:

1
= 1)

The constitutive relation in Eq. 16 was then used to find the scalar increment of inelastic strain,

. In visco-plastic simulations, both accuracy and stability deteriorate with increasing time step
size [38]. Zienkiewicz and Cormeau [38], suggest that stability requirements can be met by
limiting the maximum increment of inelastic strain at each node to a small fraction of the total
accumulated strain :

-\ﬁex-ey)z + (Ey-€2)? + (z-€x)% + 6(e§y+e§,z+e§x) (25)

Aep <P eett (26)

where B is in the range of 1 - 15%. This criterion was checked at each iteration and, if necessary,
satisfied by limiting either the inelastic strain rate or the time step size. To limit the maximum size
of A€p, a truncation routine in the program forces the value of Agp of every node to satisfy Eq.
26, and issues an appropriate warning that inelastic strains of those nodes are not as large as they

should be.

The model then checks if the inelastic strain rate calculated from the new Agp agrees with ép
assumed at the beginning of the time step, using the following convergence criterion:

el i
e; €

P
&

= N (2)

If more than n nodes fail this critcrion, then iteration is required. If the ratio in Eq. 27 is between
Thhigh and Mjow, then the time step is simply repeated with an improved estimate of the strain rate:

S . 1__ ol ..-1
erl=0g +(1-9) € (28)

Simply using the latest estimate of ep as the guess needed for the next iteration results in stability
problems, where convergence is difficult. Thus, the next estimate is based on both the latest
estimate and the estimate at the previous iteration, using a relaxation parameter of ¢$%. For the
first iteration of a time step, the strain rates obtained at the previous time step are used as the
previous estimate.

If the ratio in Eq. 27 is very large, exceeding the user-prescribed value of Thigh, then the program
reduces At to At/2 and repeats the time step in two pieces, referred to as "subiteration”. The
thermal solution for the new sub time steps is obtained by linear interpolation, assuming that the
temperature distribution varies linearly over the larger At. Note that subiteration may still be
required the next time through the loop, so that up to 128 sub time steps may be necessary to
complete some time steps.

Interfacial Gap Coupls

The coupling between the thermal and the mechanical models is done through the size of the
interface as well as the heat transfer through it. The heat flow model starts with an assumed gap
size (from time level t) and the stress model calculates a new gap size based on the nodal
displacements solved. At the end of the stress analysis at each time step, a check is made on each




node on the slab surface, to determine if the interfacial gap heat transfer was reasonable. The
convergence criterion is based on the difference between the heat flux across the interface based
on the assumed (&) and calculated (d) gap size as:

Q% - s |
—| sma 29)
qq

As long as the above criteria is satisfied the program continues to the next step, otherwise a better
guess on the gap size is made using

di+l1 =9 d'+ (1-0) &' (30)

In the mold region, coupling allows the heat flow model to determine the heat flux across the
mold/shell interface based on the air gap thickness calculated by the stress model. Coupling also
allows recalculation of the temperature distribution by linear interpolation if the stress model sub-
iterates, as described before. The thermal calculations were found to be only a small part of the
computing time with a coupled run. The overall computing time for a converged solution of a
fully coupled, visco-plastic heat flow/stress run is about 1200 CPU seconds on Silicon Graphics
Personal Iris 4D35 Workstations.

Model Verificati

To validate the internal consistency of CONCAST, two standard test problems were solved. The
first is a steady-state creep analysis of a thick-walled cylinder under internal pressure. Utilizing
only two-fold symmetry, a quarter of a 2-D slice through the cylinder was modeled. The finite
element mesh of the domain along with the boundary conditions is shown in Figure 7a. The
domain was discretized with 100 constant strain triangular elements. The stress
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Figure 7. a) FEM mesh for the test problem : Cylinder under pressure b) Comparison of
CONCAST solution of the steady state creep problem of cylinder under pressure
with that of Greenbaum & Rosenbaum.

analysis was carried out for 100 hours using the conditions and steady state creep law investigated
by Greenbaum & Rubinstein [61). The Von Mises effective stresses on the inside and outside of



the cylinder were plotted as function of time and compared with the Greenbaum & Rubinstein
[61] solution on Figure 7b. It can be seen that the model predictions are in reasonable agreement

with the analytical solutions. There is some discrepancy in the model prediction of the effective
stresses on the inside. This can be attributed to the coarse mesh used in the simulation and also to
the convergence errors. This result is believed to reflect the accuracy of the continuous casting
simulations which use a similar mesh density in the solid elements and similar convergence

parameters and time step sizes.

The second test problem involved creep deformation of a tensile specimen under constant load as
shown in Figure 8. The simulation was carried out using a two element mesh to verify the
plasticity algorithm of CONCAST on the constitutive equation of Kozlowski [59]. The tensile
creep test was carried out at 1300 °C with a constant stress of 7.1 MPa. Again as shown in
Figure 8 the model predicbns are in good agrecment with the actual solution obtained by

numerical integration [59].
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Figure 8. Comparison of solution of test problem for uniaxial tensile creep for
Kozlowski’s model IL

Results

Typical results from the models are presented in Figure 9 and 10 for the conditions given in Table
II. Figure 9 shows the temperature contours and the distorted shape of the slab at different
locations in the mold. The location of the distorted wide face mold along with the deformed shell
surface is shown in figure 10. The amount of mold penetration is within the allowable limit 8 and
appears not to be excessive. It can be seen that the majority of both the wide face and the narrow
face is in good contact with the mold, except in the corner region. The large gaps formed of
along the off-comer region of the wide face due to mold distortion are filled with both a thick flux
layer and air. This reduces the heat transfer at these locations resulting in hot spots on the shell
surface. Thus the off-corner region of the wide face becomes comparatively thinner and weak
and susceptible to possible surface depressions ("gutters") as suggested by Thomas et al.. [29,

30]




TABLE I Simulation Conditions

Mold Dimensions:
Slab width 914 mm (36™)
Slab thickness 203 mm (8")
Mold Length 700 mm
Taper 0.65 %/m (narrow face)
0.46 %/m (wide face)
Material Properties:
Grade 304 stainless steel
¢ (18% Cr, 8% Ni, .06%C)
Phase ~ 100% 7 (all temps)
Liquidus temperature 1454 °C
Solidus temperature 1399 °C
Thermal expansion coefficient 0.0021 %/°C
Casting Conditions:
Superheat 300C
Casting speed 15 mm/s (36 in/min)
Meniscus level 50 mm below mold top
Stress ‘state ‘ Plane-stress
Convergence parameters '
Heat transfer convergence (Td) 0.10
Maximum No. of nodes allowed to fail
a convergence criteria (n) 5 (narrow face) 10 (wide face)
Maximum allowable mold penetration () 0.05 mm
Maximum no. of nodes allowed to penetrate 5 (Narrow face),10(Wide face)
Stiffness multiplier (A) 10°
Truncation Parameter ® 25 %
Strain rate convergence parameter 0.05 Miow)+0-2(Nhigh)
Relaxation parameter for strain rate (¢) 0.75
Relaxation parameter for gap heat transfer (6) 0.75
Effect of Heat flux

As described earlier, the model incorporates the convection of superheat as a flux boundary
condition. The growth of the shell as a function of time is compared with that predicted by the
enhanced conductivity method in Figure 11. Due to the course mesh refinement, the shells have
a jagged appearance. However, it can be seen that due to the presence of substantial superheat at
the meniscus in the standard method, there is an unnatural delay in the start of solidification. This
leads to a thinner shell relative to the flux method prediction at the beginning. As the slab-section
nears the 'impingement point' where the imposed heat flux has its peak, a reduction in the shell
growth is observed. This effect is not reflected in the standard method, which predicts a higher
shell thickness at the mold exit instead. Moreover, the standard method predicts same shell
thickness on the narrow and the wide face. On the contrary, the heat flux method predicts a
slightly higher wide face shell thickness than the narrow face shell which is expected since more
superheat is directed to the narrow face shell from the nozzle. These results illustrate the ability of
the new superheat flux method to predict slight differences in shell growth. The accuracy and
importance of these predictions remain to be investigated.
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Figure 9. Temperature contours and the deformed slab at various locations in the mold

Effect of mold distortion :

The model has been used to predict the natural shrinkage of the shell in absence of ferrostatic
pressure. In this simulation, the narrow face wall was made to follow the natural shrinkage of the
shell keeping a fixed gap of .05 mm at the center. The shrinkage of the narrow face shell under
this ideal condition is shown in Figure 12. Figure 13 shows the shrinkage of the narrow face
shell at three different locations as a function of distance down the mold compared to the mold
wall position. It can be seen that the shell follows the thermally distorted contour of the narrow
face wall for the first 0.5 m down the mold. The thin hot shell is not strong enough to withstand
the ferrostatic pressure and plastic strain before this point. As the shell cools, it thickens and
shrinks away from the wall. The corner being the coldest due to 2-dimensional heat flow shrinks
most. This shrinkage of the shell crates a gap and reduces the heat transfer which in turn
increases the shell surface temperature at those locations (Figure 9 and 10). Thus it can be seen
that the heat transfer is greatly influenced by the size of the gap which in tun is greatly affected by
the mold taper and distortion.
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Figure 10. Position of the wide face shell and the mold at different locations in the mold

It has been shown by Thomas et. al.[5] that the distortion of the mold is of the order of few
millimeters. This distortion alters the size of the air gap across the shell greatly affects the heat
transfer. As shown in Figure 13 the distortion of the narrow face mold wall combines a .6%/m
linear taper to almost match the natural shrinkage of the shell. A straight wall (without distortion)
has insufficient taper at top of the mold while it can compress the shell at the bottom. Thus,
thermal distortion of the narrow face may be beneficial and a normal linear taper of 0.7 %/m may
be difficult to improve upon.



U-displacement (mm)

150 .
. —o0— atMid-WF, Std method -
——e— a1 Mid-NF, Std method
O —0— gt Mid-WF, Heat-flux method
£ - —&— at Mid-NF, Heat-flux method
= 100f 3 -
@ ' '
% Impingement Point
..E L 4
B 5.0 i
% J
=
W d
0.0 PRy 2 a2 2 & 2 2 2 2 2 2 2 0 2 2 2 2 0 2 2 2 2 1 2 2 8 2
0 5 10 15 20 25 30 35 40 45
- Time (sec)
Figure 11. Effect of superheat on shell thickness
351 N
;. ;v”:': ........ -
3.0 7 >
: >
257
— Wall
204 /7 Mid-face
1 =ememe=e=  Off-comner
Yy ===== Comer
1.5
1.0
051 A
o.o'.. e ———————————— T T T
0.0 0.1 0.2 0.3 0.4 - 0.5 0.6

Distance below Meniscus (m)

Figure 12. Narrow face shrinkage for .3% WFT and .5% WFT

0.7



Narrowface distortion or shrinkage (mm)

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7
Distance below meniscus (m)

Figure 13. Effect of distortion on shrinkage and taper design

Mechanical properties play an important role in the accuracy of predictions of mathematical
models. A wide range of elastic modulus data are available in the literature,which depend on both
the steel grade and the testing technique. They range from high values, for unrelaxed tests on
iron to low values for traditional tensile tests on alloy steels, where both creep and segregation
may reduce the measured modulus. Figure 14 shows the effect of the elastic modulus of steel on
the deformation of the shell during the natural shrinkage simulations with ideal taper. Two
extreme sets of elastic modulus data from Mizukami [62] and Hub [63] were were chosen for
these model runs. As shown in Figure 11 for high E modulus the effect of ferrostatic pressure is
small in the early stage of solidification when the shell is thin and weak but becomes negligible as
the shell grows. In contrast, for the low E modulus the effect of ferrostatic pressure is significant
throughout solidification in the mold. Moreover with inelastic strain the shrinkage of the shell is
further reduced as it is pushed more easily against the mold walls by the ferrostatic pressure.
Under ferrostatic pressure, the narrow face behaves similar to a centrally loaded beam, with
maximum bulging deflection at the center. Initial elastic solutions [30] have predicted
compressive stresses on the order of 30 MPa on the surface of the shell even at low tapers
(.5%/m) when the shell is not squeezed by the narrow face wall. Incorporation of creep and
plasticity through inelastic strain rate function allows the shell to undergo visco-plastic
deformation, thereby reducing stress levels in the shell to below 10 MPa. Qualitatively, stress
fields appear similar. Similar trends in the stress distribution in the shell have also been reported
by Wimer et al.[64] who developed a one-dimensional thermal stress model using ABAQUS.

Conclusions
A two-dimensional stepwise coupled visco-plastic thermo-mechanical model has been developed
to simulate the behavior of the solidifying slab in the mold region of a continuous slab casting
machine and below. The models can predict the coupled evolution of temperature, shape, stress
and strain distributions in the shell. Through boundary conditions containing the results of other
models, the present model incorporates the effects of turbulent fluid flow on superheat delivery to
the solidifying shell and the effects of thermal distortion of the mold . The superheat flux method
predicts higher and nonuniform shell growth and appears more reasonable than the standard
method of enhanced liquid conductivity. Internal consistency of the incremental plasticity
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algorithm has been validated partially with creep test problems. The results of sensitivity tests in
this work reveal that mold distortion is very important in the corner and against narrow face and
may be beneficial on narrow face. The elastic modulus and inelastic strain rate function are both
extremely important. Reasonable values for these mechanical properties muxt be found for the
steel grades of interest before accurate model predictions can be made. This model is a powerful
tool which is being applied to understand the formation of various defects in slab casting and to
find casting conditions that are conducive to avoiding these problems.
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Nomenclature*
L

Element strain-displacement matrix
Heat capacity
itance matrix
3x3 elasticity matrix for planc stress
Thermal force vector
Plastic Strain Force vector
Enthalpy
Conductance matrix
Qength
Heat flow vector
Thermal resistance
Temperature
Time derivative of Temperature
Thermal linear Expansion
Casting speed
Width

Absorption cocfﬁcwnt

Total thickness of the interfacial gap
Thickness of the air gap

Thickness of the mold flux layer
Mold distortion

Offset in mold wall position from taper

Position of mold wall
Emissivity

Heat transfer coefficient
Thermal conductivity

No of nodes failing convergence criteria

Heat transfer rate

Heat flux
Time
Time step

Incremental nodal displacements
Mesh spacing in x and y direction
Ferrite Phase

Thermal expansion coefficient
Truncation parameter

Allowable penetration of the mold by a

shell surface node
Strain components
Incremental strain
Strain rate = Ag/At

J kgl K-l
GPa

W mlK-!

BE » g€
g,

sec-1

Relaxation parameter for strain rate convergence

Gamma Phase

Convergence parameter for strain rate

Refractive index
Mass density
Stefan-Boltzmann constant

kg.m3
W, m2K+4
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Stress components MPa
Relaxation parameter for gap heat transfer convergence

Thermal

Elastic

Effective or averaged value
Liquidus

Mold

Interfacial mold flux*
Plastic

Stefan-Boltzmann

Shell

Solidus

Pertaining to an element

Current time step
Previous time step

* Other variables are defined in Table I



APPENDIX A Equations for Mechanical model Formulation

The stress distribution within the two-dimensional region is governed by the differential equation
of equilibrium for plane elasticity:

dtxy . 2
T G- Ry (A2)

The standard “displacement formulation” is used to relate the incremental strains to the
incremental displacements [6sgj:

[~ d
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o 0 0
([ Aex ) )
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Agy 3

0 0 E AUx
Agz

e=y p=| 12 12 0 Buye (A3
Aexy 2 oy 2 ox Aug
Ae 10 19
¥z 0 3% 29y
. J
Az 19 o 129
. 20z 20x -

The two dimensional representation of equations (A3) is obtained by assuming the stress state,
e.g. plane stress or generalized plane strain, resulting in an equation of only Aux and Auy:

The Hook's law for the incremental elastic isotrépic condition is

(Ao} = [E]{Aee]} (Ad)

K

where {Ac) is the stress vector, and {A€e]} is the elastic strain vector, and [E] is the material
stiffness matrix, which for plane stress is

1 A 0
E
E =20 v 10 (a3)
1-v -
o 0 7

and E(T) is the temperature dependent elastic modulus and v is the Poisson’s ratio. °



Appendix B Stress Model Finite Element Equations

The global stiffness matrix, [Ko], global thermal force vector, {Fer}, the global plastic strain
force vector,{Fep}, and the global ferrostatic pressure load vector, {Fgp} are given by

- NE
Kol = Z[Kol; = E: J (BI{ [E; [BIf dA ®1)
_ i=1 |
- NE
(Fer) = 3 (Fer); = Z: AI (BIS [E} (Aer) dA ®2)
i=1
NE NE
(Fep) = 3 (Fepl = 2: AI (BI (E} {Aep) dA  (B3)
i=]1

NBE

NBE c ‘ T .
(Fp) = (i) = E AU [NIT, (p.gVsAt)dL  (B4)

i=1
where [B]¢ is the 3x6 matrix containing the displacement gradient matrix for constant strain
triangle, NE is the number of elements in the domain NBE is the number of elements at the 80%

solid/liquid boundary, [N]T is the shape function for a 2-node beam clementendamerapites
Components of {Aer}, are calculated from the scalar values, Aer, in Eq. 13 by:

TLE(Tt+A0 - TLE(TY
Aer =9 TLE(Tt+A0 - TLE(TY) B5)

0

Components of {Agp}, are calculated from the scalar values, Agp, in Eq. 16 using the Prandtl -
Reuss equations:

A
Aepx=;d;(20x-oy)

A
A%x = _20—'eE (20’x - cy)

3 2%
AEny =§‘2—6°_ﬁ"txy . (B6)



