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ABSTRACT

Mathematical process models can assist process development and optimization in many different
ways.  This chapter discusses the different types and attributes of process models, and offers some
ideas to consider when developing, using, and implementing them.  Process models range from
empirical to mechanistic in nature and vary in complexity from simple analytical solutions to
coupled, 3-D transient numerical simulations.  They are classified here according to the way in
which they are implemented in practice, viz. fully-online models, semi-online models, off-line
models, and literature models.  The purpose of the model should dictate how choices are made
during its development.  Ways to validate and compare the model with experiments are suggested.
Examples are taken in the context of the authors’ experience in modeling the continuous casting of
steel.
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1.  INTRODUCTION

The silicon chip has changed our approach to process analysis.  In an earlier time, some of us
actually used a slide rule and drew graphs by hand.  There were merits in some of this as we
learned to estimate, carry powers of ten, and think about what we were plotting.  But, of course,
the complexity of real processes eluded us, as only simple balances and analytical solutions were
possible.  

The burgeoning evolution of the computer and user-friendly software has fundamentally
transformed our approach to process analysis and propelled us into the development and
application of mathematical process models.  The computer has unshackled us from the need to
oversimplify.  But improperly applied, it threatens to confuse and overwhelm us with needless
complexity.

In this chapter on process modeling, the challenge to simplify complex processes while
maintaining a strong hold on reality is addressed.  As shown in Figure 8.1, we need to balance the
mind-set of simplification with the power of complex analysis.  And underpinning modeling must
be measurements.

Real Process
(complex)

Assumptions

Measurements and 
Enhanced hardware / software

Process Model
(simplified)

Figure 8.1.  Compromise between mathematical simplifications, which push the process model
away from reality, and tools which bring it closer

1.1.  What is a process model?

A process model is a system of mathematical equations and constants that are usually solved on a
computer to make quantitative predictions about some aspect(s) of a real process.  The specific
variables required as input data and generated as output predictions are important features of the
model.  The equations often stem from a numerical solution to one or more differential equations
and their boundary conditions.  

The model also includes the constants, which represent material properties, empirical relationships,
and other knowledge about the process.  These usually require considerable effort to obtain,
normally by experimentation.  Thus, general-purpose commercial software packages, (e.g. finite-
element or finite-volume based codes), are not models in this context.  They serve as useful tools,
however, by providing frameworks for the development of process models, possibly saving effort
in formulating the equations.  

Thus, by definition, models require a combination of mathematics and experimental data.  To be
relevant, they also need to be validated with realistic measurements and finally implemented into
practice.  These aspects of process models will be treated in subsequent sections, in the context of
examples taken from the continuous casting of steel, which is described in Chapter 12.

2.  WHY MODEL?

There are many different reasons to develop a process model.  These include:

- increase fundamental understanding of a process



4- assist in scale-up
- design of experiments
- evaluation of experimental results
- quantifying property measurement
- online process control and optimization
- technology transfer

If a clear reason to develop a model cannot be found, then it should not be developed!

2.1  Increase process understanding

Perhaps the most important reason for modeling is to gain fundamental understanding of a process.
Without this understanding, improvements can be made only by expensive trial and error, and
error is more likely.  Models can serve as off-line tools to correct misconceptions, identify what is
important, test hypotheses and perform parametric studies.  A validated process model is an ideal
tool for isolating the effects of individual phenomena, because each variable of interest can be
changed systematically and independently.  Off-line study of the influence of different variables on
the operation of a process is often the first step in process optimization.  

2.2  Scale-up and design

Models are particularly important in the design of new processes and plants.  The ability to
extrapolate knowledge generated from bench-scale or pilot plant experiments to a commercial scale
operation varies in direct proportion to the accuracy of the process model(s) used.  Because there is
no existing plant for calibration, it is crucial that models used for this purpose be as mechanistic as
possible.  

2.3  Design of experiments

Process models can help with experimental design in several ways.  One way is to identify the
critical location(s) in a process where measurements should be made, in order to get the most use
from the experiment.  For example, without the aid of a model, thermocouples might be placed
needlessly in locations that are not very interesting.  Alternatively, there may be too few
thermocouples at critical locations where temperatures change rapidly.  

Another use of a model is to help identify the process variables which are most critical, or rate-
limiting.  Experiments can then focus on quantifying the effects of just these variables.  Finally,
models can help to ensure that an experiment does not forget a crucial phenomenon, which governs
the real process.

2.4  Evaluation of experimental results

Off-line process models can help to interpret the results of experiments.  For example, temperature
measurements may be converted to heat fluxes with the aid of a model.  These heat fluxes enable
more meaningful comparison between experimental results, because they are less specific to a
particular experimental setup.  

Process models are particularly useful when the phenomena are difficult to measure or model
physically.  Examples relevant to continuous casting include flow in the liquid pool generated by
electromagnetic or thermal effects, and thermal stress generation.  A good process model can
extrapolate the results from a few key experiments to other conditions and help to find the optimal
process conditions with less experimental effort.
 



52.5  Property measurement

Models are very important in the measurement of properties.  This is because properties are not
measured directly, but are instead derived from measurements using a model.  Furthermore,
particular property data must only be used with the specific model used to extract it from the raw
measurements.  

For example, thermal conductivity is typically calculated from an experiment which measures two
temperatures and the distance between them for a known applied heat flux.  Generally, a simple
form of Fourier’s heat conduction law is used to extract the thermal conductivity.  If, however, the
material is a semi-transparent slag, for example, then the measurements will include heat
transmitted by both conduction and radiation.  The conductivity calculation may or may not account
for this radiation.  Thus, several different conductivity “measurements” are possible from the
single experiment, depending on the heat transfer model employed in the property calculation.  A
sophisticated model might even combine the results from several experiments to simultaneously
calculate the thermal conductivity and the radiation absorption coefficient.

Future process models using the “measured” conductivity should separately account for radiation
or not, according to the same heat transfer model employed in the property calculation.  Obviously,
it is important that the experimenter reporting the property “measurements” clearly indicate the
model used in calculating the property data.  

This particular example arises when quantifying the thermal properties of molten slag layers.
Similar difficulties arise during measurement of other properties, whenever there are complicating
phenomena which cannot be avoided in the experiment.  Other practical examples include inelastic
creep relaxation during the measurement of elastic modulus at high temperature; and strain
localization during the measurement of critical fracture strain.  The lack of complete, fundamental
property data, in areas such as these, is one of the many factors limiting the accuracy of current
process models.  

Models can contribute to property measurement by providing a framework common to
experimenters and modelers alike.  The need for general models of fundamental material behavior
is growing, as the phenomena of interest grow in complexity and experiments are unable to isolate
a single property to measure.  In many cases, sophisticated mechanistic models should be used
together with the results of several experiments, in order to extract properties that are more
fundamental.  

2.6  On-line process control and optimization

The best way to optimize many processes is to control some aspect of them on-line.  This requires
a simple model, which correctly identifies the key parameters of the process and quantifies how
they affect the product.  Developing an on-line model and implementing it to control a process is
the ultimate reason to model and is discussed in further detail in a later section.

2.7  Technology transfer

Finally, models also act as a means of technology transfer, which can be embedded in expert
systems.  An expert system can provide easy access to relatively complex models and a wealth of
knowledge, without forcing the engineer to read and understand all of the literature.  

Models are excellent educational tools.  They enable visualization of the phenomena which control
a process.  The insights gained from careful evaluation of 3-D color moving images often cannot
be obtained in any other way.  Even the act of modeling can produce mental discipline in process
analysis and deepen understanding of the phenomena which govern it.  With increased process
understanding, a process engineer can make better decisions and implement improvements to
processes.



63.  TYPES OF MODELS

All process models can be classified according to their empirical versus mechanistic basis.

A fully-empirical model is created by performing a curve-fitting procedure on the results of a
statistical study with no attempt to understand the reasons for the relationships.  This type of model
is well-suited for online applications, because the resulting equations are very fast to solve, and
robust, avoiding numerical difficulties.  However, they usually become very inaccurate if
extrapolated beyond the specific range of processing conditions for which they were developed.

A fully-mechanistic, or phenomenological, model solves equations based solely on the
fundamental laws which govern natural phenomena.  These laws include the differential equations
governing the conservation and transport of mass, momentum, mechanical force, electromagnetic
force and energy, in addition to thermodynamics, phase equilibria, kinetics, and other relations.
Experimental data are incorporated in their most fundamental form, through the material properties.
A mechanistic process model can be extended to understand and solve problems with a given
process, without knowing the problem particulars prior to development of the model.

In practice, all models lie somewhere between these two extremes.  No model comes close to being
a complete, fully-mechanistic process model, despite the claims of some modelers.  In reality, it is
possible at best to model mechanistically only a tiny fraction of the actual phenomena present in a
real process.  This is because real industrial processes contain staggering complexities in
phenomena at the mechanistic level.  The continuous casting process, for example, is governed in
part by the following phenomena:  

- fully-turbulent, transient fluid motion in a complex geometry (inlet nozzle and strand liquid
pool), affected by argon gas bubbles, thermal and solutal buoyancies

- thermodynamic reactions within and between the powder and steel phases
- flow and heat transport within the liquid and solid flux layers, which float on the top surface

of the steel
- dynamic motion of the free liquid surfaces and interfaces, including the effects of surface

tension, oscillation and gravity-induced waves, and flow in several phases
- transport of superheat through the turbulent molten steel
- transport of solute (including intermixing during a grade change)
- transport of complex-geometry inclusions through the liquid, including the effects of

buoyancy, turbulent interactions, and possible entrapment of the inclusions on nozzle walls,
gas bubbles, solidifying steel walls, and the top surface

- thermal, fluid, and mechanical interactions in the meniscus region between the solidifying
meniscus, solid slag rim, infiltrating molten flux, liquid steel, powder layers, and inclusion
particles.

- heat transport through the solidifying steel shell, the interface between shell and mold, (which
contains powder layers and growing air gaps) and the copper mold.

- mass transport of powder down the gap between shell and mold
- distortion and wear of the mold walls and support rolls
- nucleation of solid crystals, both in the melt and against mold walls
- solidification of the steel shell, including the growth of grains and microstructures, phase

transformations, precipitate formation, and microsegregation
- shrinkage of the solidifying steel shell, due to thermal contraction, phase transformations, and

internal stresses
- stress generation within the solidifying steel shell, due to external forces, (mold friction,

bulging between the support rolls, withdrawal, gravity) thermal strains, creep, and plasticity
(which varies with temperature, grade, and cooling rate)

- crack formation
- coupled segregation, on both microscopic and macroscopic scales

For an arbitrary problem, any of these phenomena might be critical.  Alternatively, the critical
phenomena may not yet be identified.  Finally, many of the fundamental material properties needed
for such a mechanistic model are not yet understood, let alone measured.  



7Because of this overwhelming complexity, it is unlikely that any model will ever incorporate all of
these phenomena mechanistically - nor should one! - the model would be too complex to ever run.
All useful models focus on a specific aspect of a process, and mechanistically model only those
phenomena most important to that aspect.  Other phenomena are either ignored or incorporated
empirically.  Most models thus contain a significant component of empiricism.  The great
advantage of mechanistic models is that they can be extrapolated to simulate conditions outside the
range of model validation.  This makes them useful for design purposes.  

Empirically-based models are sometimes looked down upon because they are inflexible and serve
only a particular purpose.  However, empirical models are ideally suited to online applications,
which are so useful to industry.  It is not necessary to achieve full understanding of an existing
process before a model can be implemented.  The unknowns can be accounted for in the empirical
constants.  Naturally, the better the understanding, the better the model will be.  The challenge is to
base the process model on mechanistic understanding, without sacrificing speed, simplicity, and
robustness.

4.  OTHER PROCESS DEVELOPMENT TOOLS

As already indicated, mathematical modeling is rarely sufficient, by itself as a mathematical
exercise, to analyze the key characteristics of a materials process.  Usually, some phenomena, such
as the heat flux boundary conditions from a continuously cast strand to the water sprays, are
poorly understood and are best treated using measurements.  Many thermophysical properties,
constitutive behavior, microstructural phenomena, rheological properties, or thermochemistry,
have not been quantified and demand determination to build a credible model.  Moreover, a process
model that has not been tested with measurements can be a most dangerous distraction with the
potential to inflict harm to process development.  

Consequently, the application of mathematical models to the analysis and design of materials
processes must always be set in the context of all of the other tools of process development.  These
other tools specifically include measurements, which may be conducted in at least four different
realms: the real process, pilot plants, physical models, and the laboratory.

4.1  Industry experiments

On an operating process, by definition in the real world of complexity, measurements are obtained
only with difficulty, especially in a production environment where pressures to meet schedules are
severe and dominant.  Commercial materials processes impose difficulties of noise, heat, dust,
electrical interference, time, and space constraints.  The frustrations of integrating a research
program into the production environment are not insignificant, and are sometimes overwhelming;
but the rewards, in terms of obtaining real world data, can be awesome.  Much of what we have
learned from processes like continuous casting, copper converting and zinc slag fuming wells up
from difficult, time-consuming, and often stressful measurements made on the operating process.
Such experiments probe the complexity of fluid interaction, heat flow, and chemical reactions
which are not easily replicated under laboratory conditions.

4.2  Pilot plant experiments

That having been said, the pilot plant, which is a smaller scale of a potential or operating process,
can be a powerful tool of process development.  The pilot plant affords the opportunity to study,
away from the pressures of the production environment, the influence of process parameters on the
production rate, quality, safety, and operational care, amongst others, on the process operation.
The size of the pilot plant may vary from laboratory (bench) scale to a larger size, but the goal
always is to understand, assess and develop a process at reduced capital cost which minimizes
financial risk.



84.3  Physical model experiments

The physical model is another tool of process analysis which is aimed at simulating some of the
phenomena of a new, or existing, process through the use of more user-friendly systems, like
Plexiglas and water, as compared to molten steel and refractory.  Physical models have been
employed most frequently to study fluid flow in vessels, such as continuous casting tundishes,
where the relevant properties of water and molten metal are similar.  In the design of physical
models, similarity criteria need to be considered so that the forces at work in the real process are
simulated properly.  Such forces in fluid flow include inertial, viscous, buoyancy, and surface
tension, which may be characterized by the Reynolds, Froude, and Weber numbers.  It is critical
that the dominant forces in a process are evaluated because it is rare that all similarity criteria can be
met with the physical model.  For example, a hot metallurgical processes is accurately simulated
with a cold isothermal liquid only when the buoyancy forces are small, as indicated by the size of
the modified Froude number.  Physical models can be applied to measure mixing conditions, or
with the help of sophisticated tools like the laser Doppler velocimeter, turbulence in the fluid.  The
scaling and use of physical models must be undertaken with considerable forethought and
ingenuity, but they can yield important results on complex metals processes at relatively low cost.  

4.4  Laboratory experiments

Finally, the process engineer has in his arsenal, measurements in the laboratory.  Measurements in
a carefully-controlled laboratory setting may range from determination of thermodynamic activities,
to the rate of the Boudouard (C-CO2) reaction, to the study of sulfide particle disintegration in a
flash smelting environment.

It cannot be over-emphasized that, in the modeling of complex processes, mathematics can take us
only so far.  When inevitably we hit the wall of our understanding, measurements must be made.
All too frequently, the modeller takes the easy route of making simplifying assumptions to skirt the
difficulty and remain at the computer keyboard, rather than move to the laboratory.  This is a
mistake.  Properly formulated, a mathematical model automatically guides us to what we must
know, in terms of properties and boundary conditions.  What is missing must be measured.
Mathematical modeling is often more about measurement than it is about mathematics.  A wise
process modeller uses all of his tools, including process models, to develop and improve materials
processes.

5.  DEVELOPMENT OF A PROCESS MODEL

The process of developing a process model can be divided into several stages, which are illustrated
in Figure 8.2.  In practice, models evolve as understanding improves, so there is cycling between
the various steps.

5.1  Problem definition.

As in any other endeavor, success in modeling is more likely when there are clear objectives.
When developing, applying, evaluating, and implementing a model, a multitude of decisions must
be made, such as the choice of phenomena to simplify or ignore.  Each decision should be made by
considering the exact purpose of the model, or what problem in the real world the model is
intended to help solve.  Defining the specific reason for the model is the most important step in
model development.



95.2  Identify key phenomena

An initial goal of the process engineer in developing a process is to identify the rate limiting steps
and to determine how to control, accelerate, or optimize them.  The same is true of the process
model.  

Before developing a process model, it is essential to have a qualitative understanding of the basic
phenomena which govern the process.  This is because models, at best, can only quantify that
understanding and shed insight into the interactions between those chosen phenomena.  A model
cannot identify phenomena which have been neglected.  Important phenomena which are poorly
understood, particularly those occurring at the boundaries, are often best treated empirically by
calibrating the model with experimental measurements.

To choose the phenomena to model mechanistically, the modeller should bring in as much process
understanding as possible from all other available sources.  The place to start is with previous
literature and experience.  This includes the insights from previous laboratory, pilot-plant, and
industry experiments, physical and mathematical models, discussed in the previous section.
Simple “back-of-the-envelope” calculations and analytical solutions are invaluable as well.  Scaling
calculations are a crude preliminary tool to eliminate phenomena that are unimportant.

It is critical to identify the key phenomena or rate-limiting steps which govern the process
correctly.  Input from all process analysis tools should be gathered together and carefully
evaluated, before making the choices for this critical stage of model development.

Identify key phenomena

Choose approach and complexity

Formulate model

Solve equations

Validate model

Compare with experiments

Apply model

Evaluate predictions

Implement model / results

Define problem

Figure 8.2. Steps in process modeling



105.3  Approach and Model Complexity

Next, the type and complexity of the model must be chosen.  Process models range in complexity
from simple analytical solutions to fully-coupled, three-dimensional transient numerical
simulations.  Including another phenomenon often adds another dependent variable, (such as
concentration, temperature, velocity / pressure, or displacement), or another material property.
The purpose of the model should dictate what phenomena are included, and consequently how
complex the model should be.

The first guideline is to choose the overall model complexity according to the computing hardware
power and time frame available.  A common mistake is over-complexity.  Models for eventual
online use must be kept simple, to run in minutes or less on small computers.  Other models can
afford to include more mechanistic phenomena, and consequently be more complex.  Even then,
the developer should consider that a model which requires several weeks of execution time per run
on a supercomputer is unlikely to be productive, although it is surprisingly easy for this to happen.

The next guideline is to model phenomena in proportion both to their importance to the problem
and to how well they are understood mechanistically.  Important phenomena, which are well-
understood, are worthy of modeling in detail.  For example, detailed simulation of heat conduction
in a complex geometry has been the basis of many successful models.  Phenomena which are not
well understood are best left to simple empirical approximations, based on experiments.  For
example, convection heat transfer between spray water droplets and a hot surface is generally best
modeled empirically using correlations from experimental data: heat transfer coefficients.

Another guideline is to keep the relative errors about the same.  There is no sense in modeling one
aspect of the process (such as the geometric effect of the third dimension) to gain a 1%
improvement in accuracy, while at the same time making a 100% error by ignoring another critical
aspect of the process altogether, (such as transient effects, or upstream process variations).  

All process models should aim to simulate phenomena in the real world, which is always three-
dimensional.  To do this, it is sometimes necessary to discretize all three dimensions, thus
producing a “3-D model”.  Often, however, it is possible to make reasonable approximations,
which avoid discretizing one or more of the dimensions.  This allows huge computational savings,
because in general, each dimension discretized increases the complexity of a model by an order of
magnitude.  Before including that third dimension, it is logical to ensure that no other important
phenomena are left out of the model.  It is often easier to improve the accuracy of a model by a
crude incorporation of some secondary phenomena than by an exact modeling of the primary
phenomena in three dimensions.

A process model should be kept as simple as possible, but no simpler!  Overly complex models are
too difficult and time consuming to run.  On the other hand, simplifications which are not
reasonable may lead to erroneous conclusions that may be very costly.  Thus, it is impossible to
create an efficient model of sufficient accuracy without knowing how the model will be used.
Granted, this is a difficult task.

5.4  Model Formulation

Formulation of the mathematical equations to solve is often the least difficult of the stages in model
development.  Naturally, this depends on the complexity of the phenomena to be modeled and on
the availability of commercial software packages which can drastically reduce the time to develop a
model.    More is said about commercial software in the next section, but these packages should
not be used without a sound understanding of the principles and assumptions which underpin
them.

An essential aspect of model formulation is the making of assumptions which, if done properly,
enable us to model the important phenomena more easily, and with minimal loss of accuracy.
What to assume requires a careful assessment of the process, as described earlier, and good
judgment.  The wrong assumptions cause us to ignore important phenomena.  Too many
assumptions oversimplify the model, ultimately leading to greater empiricism and less flexibility.



11Too few assumptions may over-complexify a model and create needless expenditure of time and
money for no tangible gain.  Clearly, the ability to formulate the best assumptions can place the
mathematical model on track toward process development, or seriously de-rail it.

A mathematical model rooted in fundamental laws and mechanisms must conform to the laws of
conservation of mass, heat, energy, and momentum.  In order to apply conservation, a part of the
system must be isolated; and thus a volume element must be defined.  This volume element may
represent a significant portion of the system, leading to global balance equations.  Such could be
the case for thermodynamic models or reactor models.  Alternatively, the volume element may have
small or even infinitesimal dimensions in one, two, or three different coordinate directions,
depending on the number of dimensions chosen for the model.  The choice involves a balance
between model simplicity and potential accuracy, as already discussed.

Having defined the volume element, a balance is performed on the quantity to be conserved,
(mass, heat, momentum):

Input through surfaces   +   Generation within
of volume element element volume

=   Output through surfaces   +   Consumption within   +   Net accumulation
of volume element        volume element within volume element

These balance equations yield the governing equations, which relate the dependent variables to the
independent variables of space and time.  In the case of a mass balance, the dependent variable is
concentration.  The heat balance yields temperature, and the momentum / mass balance yields
velocity and pressure as dependent variables.  

The equations can be built directly into “finite volume” models, by constructing an algebraic
equation for each volume element.  Alternatively, a partial differential equation form of the balance
can be written based on infinitesimal volume elements, and the discrete system of simultaneous
algebraic equations derived using any of a variety of mathematical techniques, such as the Galerkin
finite element method (Zienkiewicz and Taylor, 1988)

The final step in the mathematical formulation is the specification of initial and / or boundary
conditions subject to which the governing equations are solved.  Specifying a particular boundary
condition depends on the phenomena occurring at that boundary and is usually relatively straight
forward.  Determining the coefficients, such as for heat and mass transfer, that appear in the
boundary conditions is much more difficult.  For most processes, the Handbooks do not contain
all of the information we need.  In the absence of previous published data on a relevant system,
measurements are required, as described earlier.  An otherwise well-formulated process model,
with the wrong boundary condition coefficients, will yield wrong predictions.  The same can be
said for the coefficients in the governing equations and initial conditions.

Further details on the equations for modeling specific phenomena are described in other chapters.
These include thermodynamic models in Chapter 3, mass balance and reactor models in Chapter 9,
fluid flow models in Chapter 7, and heat transfer with solidification in Chapters 6 and 12.

5.5  Solution

Next the model equations must be solved, generally by computer.  For models which do not have
to run online, it is often easiest to employ a general-purpose, commercial software package to do
this, as many powerful programs are now available.  These include flow sheet programs, such as
METSIM (Bartlett, 1996) for the construction and solution of global balance equations for
chemical reactions, based on global balances of mass and heat.  These programs include
thermodynamic databases and have been used successfully to model both metallurgical and
chemical processes, as described in other chapters.  Software specifically for thermodynamic
calculations includes FACT (Thompson, 1996) and THERMO-CALC (Sundman, 1993).  



12Fluid flow, including 3-D turbulent behavior, can be solved using any of dozens of programs.  In
complex geometries, finite element software, such as FIDAP (Engleman, 1994), has been used
successfully (Najjar et. al., 1995).  For simpler geometries, finite difference software, such as
FLUENT (1996) may be more computationally efficient.  For stress analysis, packages such as
ABAQUS (1994) include powerful algorithms for integration of the non-linear constitutive
equations that characterize most materials processes.  Most of the fluid flow and stress analysis
software can also simulate heat transfer, including complex phenomena such as solidification.
These packages offer convenient user interfaces to input choices which define the model equations,
material property data, and boundary conditions.   Evaluation of results is aided by powerful post
processing abilities built into most packages, such as color movies of contour plots of the solution
variables.

It must be emphasized that commercial packages have difficulty solving the complex equations
which are most relevant to real processes, even when features to model the desired phenomena are
provided.  For example, numerical problems are often encountered when simulating multiphase
turbulent flow or free-surface movement with current fluid flow programs.

As an alternative to commercial packages, it may be better to develop a special-purpose program to
model particular aspects of a specific process.  This enables unique features and a faster program
which is easier to use.  Examples for the process of continuous casting of steel slabs include
CON1D (Thomas et. al., 1992) for heat transfer in the mold, and MIX1D (Thomas and Huang,
1994) for intermixing during a grade change.  Sometimes, it is convenient to use commercial
packages to display the results of a special purpose program.  Software specifically designed for
this task includes TEKPLOT (1996) for viewing 3-D flow results on a regular grid and
GNUPLOT (Williams and Kelley, 1996) for fast, simple 2-D graphs on a variety of hardware.

5.6  Model Validation

Comparison of the model predictions with known solutions is an important step in model
development to verify numerical integrity of the model, for all of its conceivable uses.  The test
problem(s) should be chosen such that the model is theoretically capable of an exact match with the
known solution.  Then, the values of numerical parameters (such as mesh and time step size)
required to achieve acceptable accuracy can be clearly identified.  To be most useful, the test
problem should match the process phenomena and conditions of interest as closely as possible.
This stage in model development is particularly important for self-developed codes, to ensure there
are no programming errors.  Testing of models based on commercial packages also verifies that
they are being used correctly.  Finally, this stage of model building also can provide early insights
into the results, if the test problem is chosen carefully.  

Test problems generally must be simple.  When validating the model during this stage, however, it
is best to use a test problem that invokes as many of the features of the ultimate model as possible.
For example, to validate a 3-D finite-element model using a 1-D test problem, it is best to use a
single row of 3-D elements.  Even better is to simulate an axisymmetric test problem with a
Cartesian numerical grid.  In this way, a 1-D solution can validate a 2-D numerical scheme.  Often,
several different test problems are needed to validate all of the features of a process model.

5.7  Comparison with Experiments

Comparison of model predictions with experiments is a critical phase of using a model, once its
internal numerical consistency has been verified.  Important knowledge is always gained,
regardless of whether or not there is a match!  If the results do match experimental observations
and measurements, then there is strong circumstantial evidence that the both the model and the
experiments are correct.  This implies that the correct phenomena have been modeled, the
assumptions are reasonable, and the constants are valid, to the extent of the match.  Of course, it is
always possible for a coincidental cancellation of errors, which must be carefully guarded against
by comparing with as many experiments as possible.



13If the model predictions do not match the experimental measurements, then something is wrong
with either the model, its input data, or the experiments themselves.  In every case, there is an
opportunity to learn something.  

Sometimes, it is possible to identify a phenomenon which is responsible for the mismatch.  If this
phenomenon can be accounted for quantitatively in the model by changing only a few parameters,
then the model can be “calibrated” to the experiments by choosing value(s) for the parameter(s) that
make the model achieve the match.

Consider, for example, an online 1-D heat conduction model of continuous casting to trouble-shoot
the origin of cracks, which form at the solidification front, and to optimize cooling water flow rates
in the spray zone.  The heat transfer coefficients may be obtained as a function of water flow rate
using careful laboratory experiments.  Suppose that validation of this model using plant data
reveals that the model overpredicts the “metallurgical length” of the strand, which is the distance
below the top of the mold where the steel first becomes fully solid.  Further comparison with a 3-D
version of the model on a super computer yields similar results, proving that the 1-D assumption is
not the problem.  (This could also have been shown through simple scaling calculations.)  The
problem with this model is neglecting the tremendous enhancement in heat transfer through the
liquid phase which is produced by the turbulent flow inside the solidifying steel strand.
Considering the purpose of this model, it is unjustified to include a mechanistic treatment of the
liquid phase, even though this could be done.  Instead, the “effective” thermal conductivity of the
liquid can be increased until the model predictions match the experiments.  The resulting
“calibrated” model can be implemented at the caster to make reliable, quantitative predictions to
avoid cracks.  For its intended purpose, this crude, but calibrated, model is far superior to a fully-
coupled model of turbulent flow, heat transfer and solidification, which would be too slow and
complex to run at the caster.

Another possibility, if experiments and model predictions do not match, is that one (or more) of the
model assumptions is wrong.  For example, when attempting to use a coupled thermal-stress
model (as an off-line literature model) to simulate the formation of particular surface shape defect,
it was found to be impossible to match any of the facts known about the defect through plant
experiments.  Checking all of the model assumptions, the only one that seemed highly questionable
was the assumption of uniform heat extraction.  The model was therefore improved to vary heat
extraction by accounting for the lower heat flow across wider interfacial gaps.  It was then possible
to match the experimental trends (Moitra and Thomas, 1993).  Furthermore, the original simulation
suggested that the defect might be avoided by finding a means to make the heat extraction more
uniform.  This example is intended to show that hypothesis testing using the model together with
experimental measurements is a good way to gain insight.

Finally, when comparing with experiments, it is important to model the experiment exactly.  Even
though the experiment might not match the process as intended, it is still of value to model
validation, so long as the conditions and results were measured accurately.  For example, the steel
shell thickness predicted by a solidification model of the continuously-cast strand might not match
that measured from a “breakout shell”.  This could be due to conditions unique to the breakout,
such as the extra solidification during the time taken for the molten steel to drain from the hole in
the shell.  Proper accounting of special effects such as these could enable the model predictions to
match the breakout shell (Moitra and Thomas, 1993).  Appropriate changes would be made for
subsequent use of the model to simulate standard casting conditions.  Every experiment has its
own potential pitfalls, which should be investigated carefully.

6.  MODEL IMPLEMENTATION

Hopefully, a better understanding of how models are implemented in practice will lead to more
effective model implementation and avoid the all-too-common waste of models that are never
implemented.  The ultimate goal is not to model, but to develop a process.



146.1  Definition of model implementation.

A model has been “implemented” only after the modeling exercise has led to some tangible change
in the process, which ultimately benefits the industry.

To understand this definition, it must be recognized that the principal aim of industry is to make a
profit.  In materials-processing based industries, two possible ways to help do this is are to
improve product quality and to reduce production cost.

One way to improve quality is to eliminate defects.  Thus, a reasonable objective for a process
model could be to eliminate some defect by specifying achievable changes in the process.  Note the
two key terms: "eliminate" the defect and "achievable" changes.

Many process modeling efforts aim to predict the occurrence of some kind of defect, such as
segregation or impurities in the product. These models may provide valuable insight into the
phenomena that underlie the formation of the defect.  Before it is truly useful, however, this
phenomenological understanding, which is often gained only by the modeller, must be translated
into beneficial process changes, such as actually eliminating the defect.     

The second point is that process changes need to be achievable.  Thus, models should first identify
input and output variables that can be changed in the plant.  Another pitfall to avoid is running the
model for conditions which are infeasible to achieve in practice.  If the model is too complex for
anyone else to rerun, then the potential implementation has been lost.

Changes to the plant process can be classified according to the time needed to effect them.  “Design
variables” are relatively difficult and time-consuming to change.  Standard operating practice, or
“SOP” variables, refer to the set points of process variables that are relatively easy to change.
“Control variables” change rapidly with time, to accommodate variations in input conditions (both
accidental and intentional) and customer demands on the product.  

In continuous casting, for example, mold geometry and roll spacing are design variables, which
require major, expensive plant reconstruction to change.  SOP variables include mold water flow
rate and tundish level, which are set to desired levels.  Slide gate opening position is a control
variable that changes continuously to maintain a constant liquid level in the mold.  Depending on
the availability of online models, some variables, such as casting speed, can either be set at SOP
levels, or controlled to adapt to variations in the process, (such as slowing down casting speed
temporarily to avoid an impending breakout disaster).  Upgrading SOP variables to control
variables has obvious advantages for improving the process operation.

For a model to have any impact in industry, it must be implemented.  The above definition of
model implementation requires that changes take place in the plant.  If nothing ever changes as a
result of the modeling, then the entire exercise was wasted.  This reasonable definition sets a
demanding context for the evaluation of most models reported in the literature.  The rest of this
section explores how process models are implemented according to this definition, and to comment
on the implications for process modelers.

6.2  Ways to implement a model

There are many paths to model implementation, illustrated in Figure 8.3.  Process models are
classified here according to how their results are implemented into practical process changes:

- fully-online models
- semi-online models
- off-line models
- literature models

Online models implement beneficial change in the plant directly.  Offline and literature models
contribute to process understanding, leading to implementation by others.  Semi-online models lie



15somewhere in between.  The next sections further define and examine how each type of model is
implemented, in order of its immediate impact in industry.

6.3  Fully-online models

Fully-online models are part of the computer system controlling the process at the plant.  They
obtain their input data directly from the system (which has access to the relevant sensor signals)
and make direct changes to specific control variables, possibly under the supervision of an
operator.  Fully-online models represent the pinnacle of model implementation, as the model itself
implements change in the plant on a continuous basis.

For example, the spray water system on a slab casting machine is generally controlled by a fully-
online model.  The model is typically designed to deliver the same total amount of water to each
portion of the strand surface, changing the flow rate to account for variations in the casting speed
history experienced by each portion as it passes through the spray zones.  

Another example is a breakout detection system, which predicts when there is danger of a
“breakout”, (where molten steel escapes the solidifying shell and drains over the lower portion of
the continuous casting machine) and slows down the casting withdrawal speed to prevent this from
happening.  The model continuously analyzes the temperature signals from thermocouples
embedded throughout the mold and searches for patterns, such as low total heat flux (Gilles,
1981), or moving temperature inversions (Itoyama, 1988), that are associated with an impending
breakout.

Fully-online models must be extremely fast (to run in real time) and robust (to produce reasonable
output for any input condition, including signals from bad sensors)  These needs require that the
model be extremely simple, consisting only of logic and a few basic equations, that have been
thoroughly tested to be reliable.  

The demands for reliable accuracy are higher for online models than for any other type of model.
To meet this need first requires detailed knowledge and understanding of that aspect of the process
being controlled.  If the model is designed to prevent a defect, for example, then the exact nature of
the formation of the defect must first be understood.  In the case of breakout detection systems, for
example, the relationship between thermocouple signals and the unusual sequence of events that
accompanies solidification prior to a sticker breakout has been determined through extensive plant
and pilot-plant experimentation  (Gilles, 1981), (Itoyama, 1988).

In addition to containing an accurate qualitative understanding, the model must also be quantitative.
This generally requires extensive calibration at the particular plant in question.  In the context of
our example, the actual magnitude of the critical temperature inversion must be built into the model,
or else the breakout detection system could generate costly false alarms (if the model value was too
low) or allow breakouts (if the value was too high).

Generating the knowledge needed, and refining it into a few simple equations, is the most
demanding part of fully-online model development.  Fortunately, the model need only produce
accurate results for the limited set of process conditions at a particular plant.  Therefore, the
equations may be based on curve-fits of the results from plant, pilot-plant, physical model, or
laboratory-scale measurements, or even sophisticated numerical experiments.  Optimization
methods such as neural networks provide a useful tool for this task (Middle and Khalaf, 1995).  In
each way, the fundamental knowledge is incorporated into simple empirical relations and
constants.

Implementing the model into the plant requires extensive work to install and maintain sensors, data
acquisition, and interfacing computer systems to link the process with the computer model.  This is
a very time-consuming and expensive undertaking, so it is critical that the model is sufficiently
beneficial, accurate and robust to be worth the trouble.

Fully-online models deal with control variables, by definition.  These models transform an SOP
variable into a control variable, enabling significant process improvement.  With better process



16understanding, more SOP variables can be transformed into control variables, through the use of
fully-online models.  This enables savings in operator time, improved productivity, and product
quality by adapting faster and more consistently to changing process conditions.  Universities can
contribute to this effort by helping to develop the understanding and simple basic principles that
form the heart of these models.  In this regard, intelligent control systems, such as the intelligent
mold (Brimacombe, 1993), have great potential benefit to industry, as fully-online models of the
future.
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Figure 8.3. Flow chart for the implementation of process models in industry
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6.4  Semi-online models

Semi-online models are similar to fully-online models, except that a plant operator or process
engineer interfaces between the model and the process to determine what action to take.  This is an
important distinction in practice, which affects the nature of model implementation and the features
required of the model.  These models are best suited to help set optimum levels for SOP variables,
which need less frequent change than control variables.  

A typical semi-online model runs on a stand-alone personal computer on the operator’s desk.  For
example, in a continuous casting process, such a model might be used to indicate the optimum
places to cut the strand during a grade change, in order to minimize the amount of intermixed steel
that must be downgraded (Thomas and Huang, 1994).  Each time a new ladle is tapped that
involves a grade change, the operator inputs the relevant current process conditions and grade
specification limits for that customer, runs the model, and interprets the output to decide where to
cut the strand.  

A semi-online model could also act as a tool for trouble-shooting and on-the-spot problem solving.
For example, a fully-calibrated, 1-D heat-transfer model of a continuous slab caster could be used
to determine which rolls to change or realign in order to solve certain types of cracking problems.
It does this by calculating the shell thickness as a function of distance down the strand.  Misaligned
or worn rolls can generate certain types of internal cracks by straining the weak solid at the
solidification front.  The initiation point of these cracks, measured on a sectioned sample of the
slab, corresponds to the location of the solidification front at the time the crack was formed.  For
this model to be effective, it must be calibrated for the different grades and casting conditions at
that plant.  In addition, the operator must have access to the metallurgical results and knowledge
about the cracks.  More advanced semi-online models, such as the expert system of billet casting
developed by Brimacombe and coworkers (Brimacombe, 1993), make this analysis even easier,
and supply useful knowledge to solve other types of problems as well.  

Sometimes, a good, well-calibrated model can be implemented in more than one way.  For
example, the 1-D heat conduction model just discussed, could also be applied to optimize cooling
water flow rates in the spray zone of the continuous slab casting machine, in order to achieve a
desired temperature history for the steel surface, and thereby avoid surface cracks.

Semi-online models have many attributes that are similar to fully-online models.  Both must run
very quickly (a decision is often needed within a minute) and make quantitatively-accurate
predictions, thus requiring extensive model calibration at the plant.  In both cases, the potential
benefits from the model are controlled by the extent to which the phenomena governing the process
are understood and properly quantified in the model.

In comparison with fully-online models, semi-online models are better suited to modeling complex
phenomena.  This is because the operator can respond to information  and circumstances
unforeseen by the model to make a better decision.  It is also easier for the operator to learn from
the semi-online model, which serves as a valuable means of technology transfer between the model
developer and the plant operator.  The semi-online model requires substantially less effort to
implement into the plant, as less computer automation and interfacing systems are needed.  It is
consequently much easier to change the model, to modify or add new knowledge and capabilities.

An important feature of semi-online models is that they must be easy to run and have a very “user-
friendly” interface with the operator.  Developing this interface is one of the difficult tasks which
separates these models from all others.  Semi-online models which prove to be worthy might
eventually be implemented as fully-online models.  The semi-online stage provides the opportunity
to learn about the process, and optimize the model, by determining all of the essential minimum
number of input variables, in addition to refining its accuracy and robustness.



186.5  Off-line models

Off-line models are used by process engineers and designers (in the plant, research, quality
control, etc.) to gain personal insights and understanding about a process.  The model results are
then implemented in the plant by developing new designs or changes to standard operating
practices.  These models are not as immediately beneficial as online models, because off-line
models at best can only help to prevent a problem from occurring the next time.  More importantly,
model implementation relies solely on the model user.  

To implement beneficial changes, the user of an off-line model must have a thorough
understanding of both the process and the model.  The model developer should make it clear
(through the user manual) what the model assumptions are.  To generate the process
understanding, Figure 8.3 illustrates how the off-line model is just one of the tools that can be
used.  Model results are implemented in combination with the user’s personal knowledge, obtained
from plant, pilot-plant, physical model, and laboratory experiments, previous literature, and other
sources.  

As shown in Figure 8.3, the process understanding gained from all of these sources can help a
process engineer to implement positive changes in the plant.  This can help to avoid the dangerous
short cut, also shown in Figure 8.3, of implementing changes in the plant on the basis of trial
results without understanding the process.

Off-line models can help to provide insights in many different ways.  They can correct
misconceptions about the process, by quantifying phenomena (such as internal temperature and
flow patterns) which the process engineer has never seen or measured.  The model can also be
used for hypothesis testing, by putting numbers on a hand waving argument.  For example, a
qualitative mechanism may be suggested to explain some observed event in the plant.  A process
model could quantify the mechanism, which can then be reevaluated based on how closely the
model results match the expected behavior.

Generally, the next stage of implementation is to design plant trials to test the expected
improvements.  Off-line models can help in this experimental design.  They are most useful when
the plant trials are very expensive.  This is certainly the case when developing a new process.
Tracking the effect of a process change on the incidence of a defect in an existing process may also
be expensive.  This is because it is usually impossible to control plant experiments very well, so
the results are statistical, which demands long trials before a conclusion can be made with
confidence.  Off-line models are also important to understanding the results of plant trials.  

Another stage of implementation is finding the “optimum” way to run the process to save money.
Parametric studies or “numerical experiments” with an off-line model can play an important role in
this regard.  For example, the model of intermixing during a grade change discussed previously
could be used off-line to investigate how to minimize the amount of downgraded steel created.  The
process engineer could learn by running the model that draining the tundish to a low level before
opening the ladle and decreasing the casting speed during the grade change would shorten the
downgraded length.  Further investigation would be required to determine if the slowdown in
production to save this amount of downgrading is cost effective.  If beneficial, the new practice
could be implemented in the plant through changes in the standard operating practice.

Off-line models should be easy to use, leaving time for the user to pursue insights using other tools
and to implement the results.  Rapid turn-around time between model runs is also important to
attain the immediacy needed to understand the behavior of the model.  Although commercial
packages are the most popular framework for offline models, they only barely satisfy these
requirements.  If a process model is too difficult to use, it may be easier to obtain the needed
knowledge another way, such as through experiments, or even trial and error in the plant.   

To help implement changes, off-line models must be able to simulate process situations outside the
scope of prior experience.  Thus, the model should be as mechanistic as possible, with its roots
grounded solidly in fundamental principles, as illustrated in Figure 8.3.  Properly incorporating the
phenomena which govern that aspect of the process being modeled, allows the model to make
reasonable predictions for new conditions.  This enables implementation of new designs and



19radical changes in operating conditions.  It also makes model validation and calibration with
experiments easier.  

Unfortunately, the same sophistication that enables off-line advances in understanding also tends to
complicate and slow down the model.  This makes the model difficult to use online.  Sometimes, a
simplified version of an off-line model can be developed for online use later.  

6.6  Literature models

Literature models are defined here as off-line models which are used only by the person(s) who
developed the model.  Furthermore, the modeller has no direct contact with the process, (working
generally in a University or research environment).  The only direct way for these models to be
implemented (if they are implemented at all!) is by someone else using the reported results.

At their best, literature models can act as off-line models, possibly saving a process engineer time
in developing and running a very complex model.  Moreover, the literature model can afford the
luxury of long computing times, (even a week on a supercomputer), so may include more of the
phenomena which govern the process.

Like the off-line model, the knowledge and insights gained by the process engineer are more
important than the model itself.  It is therefore important that conclusions from the model be
communicated clearly.  The more practical and specific the insights, the easier for implementation.
It is perfectly reasonable to combine the modeling results with experimental results, physical
models, and plant data, perhaps found in existing literature.  The aim is to present as complete an
understanding as possible to the person reading the paper.  Ideally, the process engineer can search
the literature, to learn how to solve his specific problem, and implement a course of action in the
plant, in a similar manner to a doctor diagnosing and treating a patient.

Because the modeller and user are the same person, significant short-cuts in developing the user
interface of the model are permitted.  Of course, this usually makes the model too complex and
“user-vicious” for anyone else but the modeller to run.

A key attribute of the literature model is that there is no opportunity for the process engineer to
rerun the model.  All of the parametric studies must be done by the original author.  For the results
to be implemented, it is important that the modeller make reasonable assumptions regarding both
the phenomena included in the model, and the input conditions adopted in parametric studies.  To
do this, the modeller must obtain a good understanding of the process.

The implementation value of a model is less when it merely echoes knowledge already known
through plant experience or other means.  Its value is negative when it contradicts some of that
knowledge and fails to explain why.  Particularly for well-established processes, there is a great
deal of knowledge already in existence.  To ensure a positive contribution to industry, this prior
knowledge should be taken into account.  Well-studied processes generally require more
sophisticated models to contribute new knowledge than early models of a new process.

To be useful to industry, the results are best presented in the form recommended by Herbertson
(1993)  in Figure 8.4.  In this figure, “you” refers to the process engineer, so ideally, the y axis
should relate to some aspect of quality or productivity.  The x axis should contain a design or
operating variable which can be changed in the plant.  

The modeller should avoid presenting results in terms of intermediate variables, which are difficult
to control, or even measure, in practice.  For example, it is natural to use a model to find the
desired heat flux or heat transfer coefficient needed to optimize some aspect of a given process.
This is not as useful as specifying the actual fluid flow rate needed to achieve this heat transfer
condition for the specific process under consideration.  
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Figure 8.4. Graph containing results which can be implemented

The quality of presentation of the results is independent from their accuracy.  Potential weaknesses
of a model should be identified, in addition to its strong points.  It is also useful to point out when
the results are known to form upper or lower bounds to the true behavior.  To increase the
credibility of the entire modeling community, it is the responsibility of each modeller to continually
strive for accurate modeling conclusions, by understanding the process of interest and validating
the model.  

7.  SUMMARY

The rapid development of computer hardware and software over three decades has made the
mathematical model a key component in process development.  This chapter has presented some
guidelines for the development and implementation of process models.

A successful model must have a purpose, which dictates how choices are made during its
development.  Reasons to model include increasing process understanding, helping with the design
of experiments, evaluation of experimental results, scale-up, quantifying property measurement,
online process control and optimization, and technology transfer.

Modeling must be accompanied by careful measurements as needed, whether they be made on an
operating industrial process, a pilot plant, a physical model, or a laboratory apparatus.  The
process model must be viewed as one of the many tools of the process engineer, which also
includes previous literature and experience.

Models are implemented when they lead to beneficial changes to plant operation.  This is most
likely when the model is explicitly targeted at understanding how particular design, process, or
control parameters can be changed to affect specific quality or productivity variables.  Models
range in complexity from simple empirical models, suited for online implementation, to
sophisticated mechanistic models, which can be used for in-depth offline analysis.

When properly formulated, process models can yield insights to process behavior that cannot be
fathomed by other means, and lead to significant process improvements.  However, when key
phenomena are ignored, or predictions are carelessly analyzed, great harm can be done.



21Successful modeling requires understanding of both the industrial process and the computer
model.  The process engineer has the responsibility to ensure that a process model adequately
represents a system and interprets the results appropriately.

  REFERENCES

“ABAQUS,” Hibbitt, Karlsson & Sorensen, Inc., 1080 Main Street, Pawtucket, Rhode Island
02860, (1994).

BARTLETT, J. “METSIM”, Proware, 5237 N. Via Velasquez, Tucson, AZ, U.S.A., 85750, (1996).
BRIMACOMBE, J.K. “Empowerment with Knowledge - toward the Intelligent Mold for the

Continuous Casting of Steel Billets,” Metallurgical Transactions B   ,    24B, 917-935,  (1993).
ENGLEMAN, M.S. “FIDAP,” Fluid Dynamics International, Inc., 500 Davis Ave., Suite 400,

Evanston, IL 60201, (1994).
 “FLUENT”, Fluent, Inc., Lebanon, New Hampshire (1996).

GILLES, H.I. “Breakout Protection by Automatic Mold Heat Removal Control”, 2nd Process
Technology Conference, Iron and Steel Society, Inc., Warrendale, PA, 205-212, (1981).

HERBERTSON, J. AND AUSTIN, P. “The Application of Mathematical Models for Optimization of
Continuous Casting”, Modeling of Casting, Welding, and Advanced Solidification Processes -
VI, Palm Coast, FL, TMS, Warrendale, PA, 689-700, (1993).

ITOYAMA , S. et. al., “Prediction and Prevention System for Sticking Type Breakout in Continuous
Casting”, 71st Steelmaking Conference Proceedings, The Iron and Steel Society, Inc.,
Warrendale, PA, 97-102, (1988).

MIDDLE, J. AND KHALAF, G.H. “Neural network modelling of temperature distirubtion for control
of gas metal arc welding”, Modeling of Casting, Welding, and Advanced Solidification
Processes - VII, London, UK, TMS, Warrendale, PA, 397-405, (1995).

MOITRA, A. AND THOMAS, B.G. “Application of a Thermo-Mechanical Finite Element Model of
Steel Shell Behavior in the Continuous Slab Casting Mold”, 76th Steelmaking Conference,
Dallas, TX, March 28-31, 1993, Iron and Steel Society, Warrendale, PA, 657-667, (1993).

NAJJAR, F.M., B.G. THOMAS, B.G. AND HERSHEY, D.E. "Turbulent Flow Simulations in
Bifurcated Nozzles: Effects of Design and Casting Operation," Metal. Trans. B, 26B (4), 749-
765, (1995).

SUNDMAN, B. “Thermo-Calc”, Royal Inst. of Tech., Stockholm, Sweden, (1993).
“TEKPLOT”, Amtec Engineering, Belleview, WA, (1996).
THOMAS, B.G., HO, B. AND LI, G. “CON1D User’s Manual,” Univ. of Illinois, Urbana, IL,

(1992).
THOMAS, B.G. AND X. HUANG, X. “MIX1D,” Univ. of Illinois, Urbana, IL, (1994).
THOMPSON, W. “FACT”, McGill University, Montreal, Canada, (1996).
WILLIAMS , T., AND KELLEY, C. “GNUPLOT”, Pixar Corporation, Dartmouth College, Hanover,

New Hampshire, (1996).
ZIENKIEWICZ, O.C. AND  TAYLOR, R.L., “The Finite Element Method,” fourth ed., New York,

NY: McGraw Hill, (1988).


