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ABSTRACT

Mathematicalprocess modelsanassist procesdevelopment and optimization in many different

ways. This chapter discusses the different types and attributes of process models, and offers some
ideas to considewhen developing, usinggnd implementinghem. Processnodels range from
empirical to mechanistic in natund vary in complexity from simplanalytical solutions to
coupled,3-D transient numericalimulations. They are classified here according to thay in

which theyare implemented ipractice,viz. fully-online models, semi-online models, off-line
models,and literaturemodels. The purpose ofthe modelshould dictate how choices aranade

during its development. Ways to validate and compare the mattleéxperimentsare suggested.
Examples are taken in the context of the authors’ experience in modeliogntieuous casting of

steel.
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1. INTRODUCTION

The silicon chiphaschangedur approach to processalysis. In arearliertime, some of us
actuallyused aslide rule anddrew graphs by hand.There were merits in some of this as we
learned to estimate, carry powers of tend think about what we were plottin@ut, of course,
the complexity of reaprocesseeludedus, asonly simple balances arahalyticalsolutions were
possible.

The burgeoning evolution ofthe computer anduser-friendly software hagundamentally
transformed our approach to process analysis @ogelled us into the development and
application of mathematicairocess modelsThe computethas unshackled us frothe need to
oversimplify. But improperly applied, it threatens to confuse and overwhelm us with needless
complexity.

In this chapter onprocess modelingthe challenge to simplify compleprocesseswhile
maintaining a strong hold on reality is addressed. As shown in Figure 8rikeddo balance the
mind-set of simplification with the power of complaralysis. And underpinning modeling must
be measurements.

Assumptions

Process Model
(simplified)

Real Process
(complex)

<

Measurements and
Enhanced hardware / software

Figure8.1. Compromise betweemathematicakimplifications, which pushhe processmodel
away from reality, and tools which bring it closer

1.1. What is a process model?

A process model is a system raathematicaéquations and constarttsat areusually solved on a
computer to make quantitatiypgedictions about some aspect(s) ofeal process. The specific
variables required as inpdataand generated as output predictions are important features of the
model. The equations often stefrom anumericalsolution to one or more differential equations
and their boundary conditions.

The model also includes the constants, which represent material progeniassal relationships,
and other knowledge abottie process. These usually require considerable effortotatain,
normally by experimentationThus, general-purposeommercialsoftware packagege.g. finite-
element or finite-volume based codes), are not models in this cofite&y serve as useftbols,
however, by providing frameworks for the development of process models, possibly efémihg
in formulating the equations.

Thus, bydefinition, models require a combination mmathematicend experimentadata. To be
relevant, they also need to Balidatedwith realistic measurements and finaltyplemented into

practice. These aspects of process models wilidaged insubsequent sections, time context of
examples taken from the continuous casting of steel, which is described in Chapter 12.

2. WHY MODEL?
There are many different reasons to develop a process model. These include:

- increase fundamental understanding of a process



- assist in scale-up 4
- design of experiments

- evaluation of experimental results

- quantifying property measurement

- online process control and optimization

- technology transfer

If a clear reason to develop a model cannot be found, then it should not be developed!

2.1 Increase process understanding

Perhaps the most important reason for modeling is to gain fundamental understanginacefka.
Without this understandingimprovements can be maadaly by expensivdrial and error, and

error is more likely. Models can serve as off-line tools to comgstonceptions, identify what is
important, test hypotheses and perfgranametricstudies. Avalidatedprocessmodel is an ideal

tool for isolating the effects of individugthenomena, becausach variable of interest can be
changed systematically and independently. Off-line study of the influence of different variables on
the operation of a process is often the first step in process optimization.

2.2 Scale-up and design

Models are particularly important in thaesign of new processes apthnts. The ability to
extrapolate knowledge generated from bench-scale or pilot plant experimermsnionarcial scale
operation varies in direct proportion to the accuracy of the process model(s) used. Because there is
no existing plant for calibration, it is crucial that models used for this purposerbecaanistic as
possible.

2.3 Design of experiments

Procesamodels can helwiith experimentabdesign in severalvays. Oneway is toidentify the

critical location(s) in a process where measurenms&msild be made, in order ¢t themost use
from the experiment. For example, withotlte aid of amodel, thermocouplemight be placed
needlessly in locationshat arenot very interesting. Alternativelythere may be too few
thermocouples at critical locations where temperatures change rapidly.

Anotheruse of amodel is to help identify thprocessvariables whichare most critical, orrate-

limiting. Experiments can theiocus on quantifyinghe effects ofust these variablesFinally,

models can help to ensure that an experiment does not forget a crucial phenomenon, which governs
the real process.

2.4 Evaluation of experimental results

Off-line process models can help to interpret the results of experimeotsexampletemperature
measurements may be converted to fleaes withthe aid of anodel. These healluxes enable
more meaningful comparison between experimamsillts, because they arkess specific to a
particular experimental setup.

Processmodels are particularlyseful whenthe phenomena are difficult to measure or model
physically. Examples relevant toontinuous castingicludeflow in the liquid pool generated by
electromagnetic or thermaiffects, andthermalstress generation. A good processdel can
extrapolate the results from a few key experiments to other conditions and helpttee foutimal
process conditions with less experimental effort.



2.5 Property measurement 5

Models arevery important inthe measurement @roperties. This idecause properties are not
measured directly, butire instead deriveffom measurementssing a model. Furthermore,
particular property data must only beed withthe specific modelised toextract itfrom the raw
measurements.

For example, thermal conductivity is typicattglculatedirom an experimenivhich measures two
temperatures and the distance betwibemfor a knownapplied heaflux. Generally, asimple

form of Fourier’s heat conduction law is used to extract the thermal conducilivityjowever, the
material is asemi-transparenslag, for example, thenthe measurements will includbeat
transmitted by both conduction and radiation. The conductivity calculation may or may not account
for this radiation. Thus, several different conductivity “measurements” g@@ssible from the
single experiment, dependlng on theattransfer model employed the property calculation. A
sophisticated model might even combine thsults from several experiments to simultaneously
calculate the thermal conductivity and the radiation absorption coefficient.

Future process models usitige “measured” conductivitghouldseparately accourfior radiation

or not, according to the same heat transfer model employed in the property calculation. Obviously,
it is important that the experimentezporting theproperty “measurementlearly indicate the

model used in calculating the property data.

This particularexamplearises when quantifyinghe thermalproperties of molterslag layers.
Similar difficulties arise during measurement of otheyperties, wheneveahere are complicating
phenomena which cannot be avoided indkperiment. Other practical examples include inelastic
creep relaxatiorduring the measurement of elastinodulus at hightemperature; and strain
localization during the measurement of critiralcturestrain. The lack ofcomplete, fundamental
property data, irareassuch as these, @ne of the many factoigniting the accuracy of current
process models.

Models can contribute tgroperty measurement by providing a framework common to
experimenters and modelers alike. The reedjeneral models of fundamentakterialbehavior

is growing, as the phenomena of interest grow in complexity and experianenisable to isolate

a single property to measure. rimany cases,sophisticated mechanistic modalsould be used
together withthe results of several experiments, in ordereidract propertiesthat are more
fundamental.

2.6 On-line process control and optimization

The best way to optimize many processes is to control some aspketnain-line. This requires
a simplemodel, whichcorrectly identifies the key parameters of frecess andjuantifies how
they affect theproduct. Developing an on-line model and implementing it to contrptacess is
the ultimate reason to model and is discussed in further detalil in a later section.

2.7 Technology transfer

Finally, models als@act as aneans of technologyransfer, whichcan be embedded in expert
systems. An expert system can provide easy accesktioely complex models and a wealth of
knowledge, without forcing the engineer to read and understand all of the literature.

Models are excellent educational tools. They enable visualization of the phenshiemaontrol

a process.Theinsightsgained from careful evaluation 8tD color moving images often cannot
be obtained in any othevay. Even theact of modeling can produceental discipline irprocess
analysis and deepen understandinghaf phenomenavhich govern it. With increasedorocess
understanding, a processgineer can make bettdecisions andmplement improvements to
processes.



3. TYPES OF MODELS 6
All process models can be classified according to their empirical versus mechanistic basis.

A fully-empirical model is created bgerforming a curve-fitting procedure on thesults of a
statistical study with no attempt to understand the reasons for the relationships. Thigwyolelof

is well-suited foronline applications, becausige resulting equations akery fast tosolve, and
robust, avoiding numericaldifficulties. However, they usually becomerery inaccurate if
extrapolated beyond the specific range of processing conditions for which they were developed.

A fully-mechanistic, or phenomenological, modsblves equations based solely on the
fundamental laws which govern natural phenomena. Thesenclude the differential equations
governingthe conservation anglansport ofmass,momentummechanicaforce, electromagnetic
force andenergy, inaddition to thermodynamics, phase equilibkaetics, and other relations.
Experimental data are incorporated in their most fundamental form, througiatégalproperties.

A mechanisticprocessmodel can be extended tmderstand and solve problems with a given
process, without knowing the problem particulars prior to development of the model.

In practice, all models lie somewhere between these two extremes. No model comes close to being
a complete, fully-mechanistic process model, despite the claims of some modelers. In reality, it is
possible at best to model mechanisticallyy a tiny fraction ofthe actuaphenomena present in a
real process. This is becauseeal industrial processescontain staggering complexities in
phenomena at the mechanistic level. Thatinuous castingrocess, foexample, is governed in
part by the following phenomena:

- fully-turbulent, transient fluid motion in @mplex geometry (inlet nozzle astrandliquid
pool), affected by argon gas bubbles, thermal and solutal buoyancies

- thermodynamic reactions within and between the powder and steel phases

- flow and heat transport within the liquid and solid flux layers, wHadit on the top surface
of the steel

- dynamic motion of the free liquidurfaces and interfaces, includitite effects of surface
tension, oscillation and gravity-induced waves, and flow in several phases

- transport of superheat through the turbulent molten steel

- transport of solute (including intermixing during a grade change)

- transport of complex-geometry inclusions throutje liquid, including the effects of
buoyancy, turbulent interactions, and possdii&gapment of thénclusions omozzlewalls,
gas bubbles, solidifying steel walls, and the top surface

- thermal, fluid,and mechanical interactions in thmeniscus region betweedhe solidifying
meniscus, solid slag rinmfiltrating moltenflux, liquid steel, powder layergnd inclusion
particles.

- heat transport through the solidifying steel shell, the interface between shelb&thdwhich
contains powder layers and growing air gaps) and the copper mold.

- mass transport of powder down the gap between shell and mold

- distortion and wear of the mold walls and support rolls

- nucleation of solid crystals, both in the melt and against mold walls

- solidification of the steethell, including thegrowth of grains and microstructures, phase
transformations, precipitate formation, and microsegregation

- shrinkage of the solidifying steel shell, due to thermal contraction, phase transformations, and
internal stresses

- stressgeneration within the solidifying steshell, due to externaforces, (mold friction,
bulging between the support rolls, withdrawal, gravihgrmalstrains, creepand plasticity
(which varies with temperature, grade, and cooling rate)

- crack formation

- coupled segregation, on both microscopic and macroscopic scales

For anarbitrary problem, any ofthese phenomena might be critical. Alternatively, th&cal
phenomena may not yet be identified. Finally, many of the fundammeatatialproperties needed
for such a mechanistic model are not yet understood, let alone measured.



Because of this overwhelming complexity, it is unlikely that any model will ever incorzirate 7
these phenomena mechanistically - nor should one! - the model would be too complexrtm ever

All useful models focus onspecific aspect of process,and mechanistically modenly those
phenomena most important tieat aspect. Other phenomena are eithgnored or incorporated
empirically. Most modelghus contain a significant component of empiricismTlhe great
advantage of mechanistic models is that they can be extrapolated to simulate conditions outside the
range of model validation. This makes them useful for design purposes.

Empirically-based models are sometimes looledn uponbecause they are inflexible asdrve

only a particulapurpose. Howeverempirical models ardadeally suited to online applications,

which are souseful to industry. It is:iot necessary tachieve fullunderstanding of an existing
process before a model can be implemented. uhkaownscan be accountefr in the empirical
constants. Naturally, the better the understanding, the better the model will be. The challenge is to
basethe processnodel on mechanistionderstanding, withousacrificing speed,simplicity, and
robustness.

4. OTHER PROCESS DEVELOPMENT TOOLS

As already indicatedmathematicalmodeling is rarelysufficient, by itself as amathematical
exercise, to analyze the key characteristics of a materials process. Usually, some phenomena, such
as the heatlux boundary conditions from a continuoustgst strand tdhe watersprays, are

poorly understood andre besttreatedusing measurementsMany thermophysicaproperties,
constitutive behavior, microstructural phenomenaheological properties, or thermochemistry,

have not been quantified and demand determination to build a credible model. Moreover, a process
model thathas notbeen tested with measuremecds be amost dangerous distraction with the
potential to inflict harm to process development.

Consequentlythe application of mathematicahodels to theanalysis and design ahaterials
processes must always be set in the context of all of the other tools of process development. These
other tools specifically includemeasurements, whiainay be conducted in at ledsur different

realms: the real process, pilot plants, physical models, and the laboratory.

4.1 Industry experiments

On an operating process, by definition in the real world of complaxrigasurements are obtained
only with difficulty, especially in a production environment whpressures toneetschedules are
severe and dominantCommercial materialprocesses imposdifficulties of noise, heatdust,
electricalinterference, time, and spacenstraints. The frustrations ofintegrating a research
program into the production environment are instgnificant, andare sometimes overwhelming;
but the rewards, iterms of obtaining reakorld data,can beawesome.Much of what wehave
learned fromprocessedike continuous casting, coppeonverting andinc slag fuming wells up
from difficult, time-consuming, and oftestressfulmeasurements made on the operatracess.
Such experiments prob¢éhe complexity of fluid interactionheat flow, and chemical reactions
which are not easily replicated under laboratory conditions.

4.2 Pilot plant experiments

That having been said, the pilot plant, which is a smaller scalgateatial or operatingrocess,

can be gpowerful tool of process developmentThe pilot plantaffordsthe opportunity tostudy,

away from the pressures of the production environment, the influence of process parameters on the
production rate, quality, safetgnd operationatare, amongsbthers, onthe process operation.

The size of the pilot plant mayary from laboratory (bench) scale to a largere, but the goal

always is to understand, assesxl develop grocess ateducedcapital cost whichminimizes

financial risk.



4.3 Physical model experiments 8

The physical model is another tool mfocess analysis which @med at simulatinggome of the
phenomena of aew, or existing, process througie use ofmore user-friendlysystems,like
Plexiglas andwvater, ascompared to molten steel amdfractory. Physical modelsave been
employed most frequently &tudyfluid flow in vessels, such as continuocestingtundishes,
wherethe relevant properties of water and molteatal aresimilar. Inthe design of physical
models,similarity criteria need to beonsidered sthat theforces at work irthe realprocess are
simulatedproperly. Such forces ifiuid flow include inertial,viscous, buoyancyand surface
tension, which may beharacterized by thReynolds, Froudeand Webenumbers. It isritical

that the dominant forces in a process are evaluated because it is rare that all similarity criteria can be
metwith the physicaimodel. For example, laot metallurgicalprocesses isccurately simulated

with a cold isothermal liquid only when theloyancy forcesresmall, asindicated by the size of

the modifiedFroude number. Physicalodels can be applied to measure mixaapditions, or

with the help of sophisticated tools like the laser Doppler velocimeter, turbulencefimdheThe
scaling anduse of physical models must hendertaken with considerable forethought and
ingenuity, but they can yield important results on complex metals processes at relatively low cost.

4.4 Laboratory experiments

Finally, the process engineer has in his arsenal, measuremtmds$ainoratory. Measurements in

a carefully-controlled laboratory setting may range from determination of thermodynamic activities,
to the rate of th®oudouard (C-C@) reaction, tathe study of sulfideparticle disintegration in a
flash smelting environment.

It cannot be over-emphasized that, in the modeling of conpulasessesmathematics can take us
only so far. When inevitably wiait the wall ofour understandingneasurements must beade.

All too frequently, the modeller takes the easy route of making simplifying assumptions to skirt the
difficulty and remain at the comput&eyboard,rather than move to thaboratory. This is a
mistake. Properly formulated, mathematical model automaticalfjjuides us to what we must
know, interms of properties and boundargnditions. What is missing must be measured.
Mathematicaimodeling is often more about measurement than it is about mathematiagse A
process modeller uses all of his tools, including process models, to develop and imgateneads
processes.

5. DEVELOPMENT OF A PROCESS MODEL

The process of developing a process model can be divided into several stagesreviiigsirated
in Figure 8.2. In practice, modedsolve as understandingiproves, sahere is cycling between
the various steps.

5.1 Problem definition.

As in any otherendeavor, success modeling is more likelywhen there are cleaobjectives.

When developing, applying, evaluating, and implementing a moaeljtaude ofdecisions must

be made, such as the choice of phenomena to simplify or ignore. Each decision should be made by
consideringthe exactpurpose ofthe model, or whatproblem in the realvorld the model is
intended to helolve. Defining the specificeason fothe model is thenost important step in

model development.



5.2 ldentify key phenomena

An initial goal of the process engineer in developin@cess is tadentify the rate limitingsteps
and to determin@ow to control,accelerate, or optimizétaem. The same is true of thgrocess
model.

Before developing a process model, iessential to have a qualitativederstanding othe basic
phenomena which govethe process. This is becausenodels, at bestgan only quantify that

understanding and shed insighiio the interactions betwee¢hose chosen phenomena. nfodel

cannot identify phenomena which have been neglected. Important phenomenareipicbrly

understoodparticularly those occurring athe boundariesare oftenbesttreated empirically by
calibrating the model with experimental measurements.

To choose the phenomena to model mechanistically, the mostetield bring in asnuchprocess
understanding as possible fragit other availablesources. The place tostart is with previous
literature andexperience. This includdgke insights from previous laboratory, pilot-plant, and
industry experiments, physical armdathematicalmodels, discussed ithe previous section.
Simple “back-of-the-envelope” calculations and analytical solutions are invaluakédlasScaling
calculations are a crude preliminary tool to eliminate phenomena that are unimportant.

It is critical to identify thekey phenomena or rate-limitingteps which goverrthe process
correctly. Input fromall process analysis tools should bathered together and carefully
evaluated, before making the choices for this critical stage of model development.

( Define _problem )

— | Identify key phenomena
Choose approach and complexity

Formulate model

Solve equations
Validate model

v

—— | Compare with experiments

Ij Apply model
Evaluate predictions

v

Gmplement model / results)

Figure 8.2. Steps in process modeling



5.3 Approach and Model Complexity 10

Next, the type and complexity of the model musthesen. Processodels range in complexity
from simple analytical solutions to fully-coupled, three-dimensional transiemimerical
simulations. Including another phenomenon oféelds another dependent variablésuch as
concentration, temperature, velocitypressure, odisplacement), or anothenaterial property.
The purpose ofthe modelshould dictate what phenomenare included, and consequently how
complex the model should be.

The first guideline is to choose the overall model complexity according to the comipardvwgare
power andime frame available. A common mistake is over-complexity. Modéiseventual
online use must be kepimple, to run iCMinutes orless onsmall computers. Othermodels can
afford toinclude more mechanistghenomena, and consequentlyrbere complex. Eventhen,
the developer should consider that a model which requires several weeks of exgoatpar run
on a supercomputer is unlikely to be productive, although it is surprisingly easy for this to happen.

The next guideline is to model phenomenagriaportion both taheir importance to the problem

and tohow well they areunderstood mechanistically. Important phenomena, whrehwell-
understood, are worthy of modeling in detail. For example, detailed simulatif@abtonduction

in a complex geometry has been basis ofmanysuccessful modelsPhenomena whichre not

well understoodare bestleft to simple empiricalapproximations, based on experiments. For
example, convection heat transfer between spray water droplets and a hot surface is generally best
modeled empirically using correlations from experimental data: heat transfer coefficients.

Another guideline is to keep the relative errors about the same. Thersens®m irmodeling one
aspect of theprocess (such athe geometric effect of the third dimension) to gain a 1%
improvement in accuracy, while at the same time makih@086 error by ignoringnothercritical
aspect of the process altogether, (such as transient effects, or upstream process variations).

All process models shouldm to simulate phenomena in the reabrld, which is alwayshree-
dimensional. To do this, it isometimes necessary to discretae three dimensions, thus
producing a‘3-D model”. Often, however, it is possible moake reasonablepproximations,
which avoid discretizing one or more of the dimensions. This allows dargputationakavings,
because in general, each dimension discretized increases the complexity of a modaeidey ah
magnitude. Before includintipat thirddimension, it idogical to ensurethat no other important
phenomena are leftut of themodel. It isoften easier to improve the accuracy of a model by a
crude incorporation of some secondary phenomena than lexa modeling of the primary
phenomena in three dimensions.

A process model should be kept as simple as possible, but no simpler! Overly complex models are
too difficult andtime consuming torun. Onthe otherhand, simplifications whichare not
reasonable may lead @roneous conclusiortkat may bevery costly. Thus, it isimpossible to

create an efficient model @ufficient accuracy withouknowing howthe model will beused.
Granted, this is a difficult task.

5.4 Model Formulation

Formulation of the mathematical equations to solve is often the least difficult sthtiess irmodel
development. Naturally, this dependstba complexity of the phenomena to be modeled and on
the availability of commercial software packages which can drastically redutene¢hi® develop a
model. More issaid aboutommercialsoftware inthe nextsection, buthese packageshould

not be used without aound understanding dfie principles andssumptions which underpin
them.

An essential aspect of model formulation is the makingssumptions which, iflone properly,
enable us to model the important phenomena reasdly, and withminimal loss of accuracy.
What to assume requires @areful assessment ahe process, aglescribed earlier, and good
judgment. The wrong assumptiongause us to ignore importaphenomena. Toanany
assumptions oversimplifshe model, ultimately leading to greater empiricisand less flexibility.



Too few assumptionsiay over-complexify a model armleateneedless expenditure time and 11
moneyfor no tangiblegain. Clearlythe ability to formulate thdest assumptionsan place the
mathematical model on track toward process development, or seriously de-rail it.

A mathematical modeboted in fundamentdhws andmechanisms must conform tbe laws of
conservation of mass, heat, energy, and momentum. In order to apply conseryarbraf dahe

system must be isolated; atidus avolume elemenimust be defined. Thigolume element may
represent a significant portion of tegstem,leading to global balanaequations. Suchould be

the case for thermodynamic models or reactor models. Alternatively, the volume element may have
small or even infinitesimatlimensions in onetwo, or three different coordinat@lirections,
depending on the number dfmensions chosen fdahe model. The choiceinvolves abalance
between model simplicity and potential accuracy, as already discussed.

Having definedthe volume element, a balance is performed on the quantity woreerved,
(mass, heat, momentum):

Input through surfaces + Generation within
of volume element element volume

= Output through surfaces + Consumption within + Net accumulation
of volume element volume element within volume element

These balance equations yield the governing equations, wéiate thedependent variables to the
independent variables of space and timethéncase of anass balancahe dependent variable is
concentration. Thdeat balancegields temperature, and the momentummdssbalance yields
velocity and pressure as dependent variables.

The equations can be built directly intfinite volume” models, byconstructing analgebraic
equation for each volume element. Alternatively, a partial differential equation fottme dalance

can be writterbased orninfinitesimal volumeelements, andhe discretesystem of simultaneous
algebraic equations derived using any of a variety of mathematical techniques, such as the Galerkin
finite element method (Zienkiewicz and Taylor, 1988)

The final step inthe mathematicalormulation is the specification ahitial and / or boundary
conditions subject to which the governing equatiaresolved. Specifying a particulaboundary
condition depends otine phenomena occurring thit boundary and is usuallselatively straight
forward. Determining thecoefficients, such as fdreatand massransfer,that appear in the
boundary conditions immuch more difficult. For mostprocessesthe Handbooks daot contain
all of theinformation weneed. Inthe absence gérevious publishedata on a relevargystem,
measurements arequired, as described earlier. An otherwigsl-formulatedprocess model,
with the wrong boundarycondition coefficients, willield wrong predictions.The same can be
said for the coefficients in the governing equations and initial conditions.

Further details on the equatiofts modeling specific phenomena are described in athapters.
These include thermodynamic models in Chapter 3, mass balance and reactor models in Chapter 9,
fluid flow models in Chapter 7, and heat transfer with solidification in Chapters 6 and 12.

5.5 Solution

Next the model equations must be solved, generally by computenndetmis which do ndhave
to run online, it isoften easiest to employgeneral-purposesommercialsoftwarepackage to do
this, as many powerful programs are navailable. These includiow sheetprograms, such as
METSIM (Bartlett, 1996) forthe construction andolution of globalbalance equations for
chemical reactions, based oglobal balances oimass and heat. These programsnclude
thermodynamic databases and have besed successfully tonodel bothmetallurgical and
chemicalprocesses, adescribed in othechapters. Softwarspecifically for thermodynamic
calculations includes FACT (Thompson, 1996) and THERMO-CALC (Sundman, 1993).



Fluid flow, including 3-D turbulent behavior, can be solved using any of dozggregrfams. In 12
complexgeometriesfinite elementsoftware, such asIDAP (Engleman1994), hasbeenused
successfully (Najjaet. al., 1995). Fosimpler geometriedijnite differencesoftware, such as
FLUENT (1996)may be more computationally efficientor stress analysigackages such as
ABAQUS (1994) include powerful algorithmsfor integration of the non-linear constitutive
equationghat characterizenostmaterialsprocesses.Most of the fluidflow and stress analysis
softwarecan also simulateheattransfer,including complex phenomensuch as solidification.
These packages offer convenient user interfaces to input choices which define thequatiehs,
material property data, and boundary conditions. Evaluatioesoits isaided bypowerful post
processing abilities built into most packages, such as color movies of contour plassofution
variables.

It must be emphasizeithat commerciapackages have difficulty solvintpe complex equations
which are most relevant to real processes, even when features totineodekired phenomena are
provided. For examplenumericalproblemsare often encounteredhen simulating multiphase
turbulent flow or free-surface movement with current fluid flow programs.

As an alternative to commercial packages, it may be better to develop a special-purpose program to
model particular aspects of a specpiocess. This enables unique features and a faster program
which is easier tause. Examplesfor the process of continuousasting of steeklabs include

CON1D (Thomast. al., 1992) foheattransfer inthe mold, and MIX1D (Thomas andHuang,

1994) forintermixing during a gradehange. Sometimes, it ©onvenient touse commercial
packages to display thresults of aspecialpurpose program. Softwaspecifically designed for

this task includes TEKPLOT1996) for viewing 3-D flow results on aregular grid and
GNUPLOT (Williams and Kelley, 1996) for fast, simple 2-D graphs on a variety of hardware.

5.6 Model Validation

Comparison ofthe model predictionsvith known solutions is anmportant step inmodel
development to verify numerical integrity of theodel, forall of its conceivableuses. The test
problem(s) should be chosen such that the model is theoretically capable of anaghwaiith the
known solution. Thenthe values of numerical parametéssich as mesh aniine step size)
required to achievacceptable accuracy can be cleadgntified. To be most usefuthe test
problemshouldmatch theprocessphenomena and conditions of interest as closelgassible.
This stage in model development is particularly important for self-developes, to ensurinere
are no programmingrrors. Testing of models based @mommercialpackages also verifiebat
they are being used correctly. Finally, this stagmodel building alsaan provide earlynsights
into the results, if the test problem is chosen carefully.

Test problems generally must be simple. When validating the model durirgfaips however, it

is best to use a test problem that invokes as many of the featuresutiintée model apossible.

For example, tovalidate a 3-D finite-element modesing al-D testproblem, it is best to use a
singlerow of 3-D elements. Evemetter is to simulate an axisymmetric test probleith a
Cartesian numerical grid. In this way, a 1-D solution can validate a 2-D numerical scheme. Often,
several different test problems are needed to validate all of the features of a process model.

5.7 Comparison with Experiments

Comparison oimodel predictions with experiments iciical phase of using a modednce its

internal numericalconsistency haseen verified. Important knowledge is alwaygained,
regardless of whether or nibtere is a match! If theesultsdo match experimentabbservations

and measurements, théimere isstrong circumstantial evidence that thmth the model and the
experiments arecorrect. Thisimplies that the correct phenomena have bewueled, the
assumptions are reasonable, and the constants are valid, to the extent of the match. Of course, it is
always possible for aoincidental cancellation adrrors, whichmust be carefully guarded against

by comparing with as many experiments as possible.



If the model predictions do natatch the experimentaheasurements, then somethingwisong 13
with either themodel, itsinput data, orthe experimentshemselves. In evergase,there is an
opportunity to learn something.

Sometimes, it is possible to identify a phenomenon which is responsilileefoismatch. If this
phenomenon can be accounted for quantitatively in the model by chamiyng few parameters,
then the model can be “calibrated” to the experiments by choosing value(s) for the parathater(s)
make the model achieve the match.

Consider, for example, an online 1-D heat conduction model of continuous casting to trouble-shoot
the origin of cracks, which form at the solidification front, and to optimize cooling waterfies

in the spray zone. Theeattransfer coefficientsnay be obtained as a function of walew rate

using careful laboratoryexperiments. Supposthat validation ofthis modelusing plant data
reveals that the modelerpredicts thémetallurgical length” of thestrand, which ighe distance
below the top of the mold where the steel first becomes fully solid. Further comparison with a 3-D
version of the model on a super computer yields similar results, proving tHabDtlessumption is

not theproblem. (Thiscould also have beeshown throughsimple scaling calculations.) The
problem with this model is neglectirthe tremendous enhancementhigattransfer through the
liquid phase which is produced ke turbulentflow inside the solidifying steelstrand.
Consideringthe purpose of this model, it is unjustified iteclude a mechanistic treatment of the
liquid phase, even though this could d@ne. Insteadhe “effective” thermal conductivity of the
liquid can be increased until the model predictionatch theexperiments. The resulting
“calibrated” model can be implemented at the caster to maiable, quantitative predictions to
avoid cracks. For its intended purpose, this crude, but calibratatgl is farsuperior to a fully-
coupled model of turbuleritow, heattransfer and solidification, which would be tstow and
complex to run at the caster.

Another possibility, if experiments and model predictions do not match, is that one (or more) of the
model assumptions is wrong. Faxample, wherattempting touse acoupled thermal-stress
model (as an off-line literature model) to simulate the formation of partisulésice shape defect,

it was found to be impossible tmatchany of the factknown about the defecthrough plant
experiments. Checking all of the model assumptions, the only one that seemed highly questionable
was the assumption of unifornmeatextraction. The modelwastherefore improved to varieat
extraction by accounting for the lower heat flow across wider interfacial gaps. It was then possible
to match the experimental trends (Moitra and Thomas, 1993). Furthermore, the original simulation
suggestedhat the defect might be avoided foyding a means tanake the heat extraction more
uniform. This example is intended sbow that hypothesis testingsingthe model together with
experimental measurements is a good way to gain insight.

Finally, when comparing with experiments, it is importaniniedel the experimergxactly. Even
thoughthe experiment might namnatch theprocess as intended, it &ill of value to model
validation, so long as the conditions and results were measured accuFatekyxamplethe steel
shell thickness predicted by a solidification model of the continuouslstrastdmight notmatch
that measured from a “breakoshell”. Thiscould be due to conditions unique to theakout,
such as the extra solidification duritige timetakenfor the molten steel to drainom the hole in
the shell. Proper accounting of special effects suchese could enable the model predictions to
match thebreakout shell (Moitrand Thomas, 1993). Appropriate changewould bemade for
subsequent use ttie model to simulatstandard castingonditions. Every experimenhas its
own potential pitfalls, which should be investigated carefully.

6. MODEL IMPLEMENTATION

Hopefully, abetterunderstanding of hownodels aramplemented in practice will lead to more
effective model implementatioand avoid the all-too-commowaste of modelghat are never
implemented. The ultimate goal is not to model, but to develop a process.



6.1 Definition of model implementation. 14

A model has been “implemented” only after the modeling exehaséed to some tangible change
in the process, which ultimately benefits the industry.

To understand this definition, it must be recognitted the principahim of industry is tomake a
profit. In materials-processing based industries, two possilalgs to help do this isare to
improve product quality and to reduce production cost.

Oneway toimprove quality is toeliminatedefects. Thus, aasonable objectivior a process
model could be to eliminate some defect by specifying achievable changes in the process. Note the
two key terms: "eliminate” the defect and "achievable" changes.

Many processmodeling effortsaim to predict the occurrence giome kind of defect, such as
segregation or impurities in theroduct. These models may provide valuable insight into the
phenomena that underlie the formation of tlefect. Before it is trulyuseful, however this
phenomenologicalinderstanding, which igften gained only byhe modeller, must be translated
into beneficial process changes, such as actually eliminating the defect.

The second point is that process changes need to be achievable. Thus, models shdeidiffirst
input and output variables that can be changed ipld&. Another pitfall to avoid isunning the
modelfor conditions whichare infeasible to achieve in practice. If the model is too complex for
anyone else to rerun, then the potential implementation has been lost.

Changes to the plant process can be classified according to the time needed to effect them. “Design
variables” are relatively difficult and time-consumingcteange. Standardperating practice, or

“SOP” variables, refer tohe setpoints of procesvariables that are relativelgasy to change.
“Control variables” change rapidly with time, &occommodate variations in inpenditions (both
accidental and intentional) and customer demands on the product.

In continuous casting, for examplapld geometry and roll spacing adesign variables, which
requiremajor, expensiv@lant reconstruction tohange. SORariables include mold watdiow
rateand tundish level, whichre set to desiretbvels. Slide gateopening position is a control
variable thatthanges continuously tmaintain aconstant liquidevel in themold. Depending on
the availability of onlinenodels, some variables, suchaastingspeed,can either be set at SOP
levels, orcontrolled to adapt to variations in tipeocess, (such as slowing dowasting speed
temporarily to avoid an impending breakalisaster). Upgrading SORariables to control
variables has obvious advantages for improving the process operation.

For amodel to have anympact inindustry, it must bemplemented. The above definition of
model implementatiomequiresthat changedake place in th@lant. If nothingever changes as a
result of themodeling,then the entire exercisgas wasted. Thigseasonable definitiorsets a
demanding contexor the evaluation ofnost models reported ithe literature. Theest of this
section explores how process models are implemented according to this definitioncamanent
on the implications for process modelers.

6.2 Ways to implement a model

There are manypaths tomodel implementation, illustrated irigure 8.3. Processnodels are
classified here according to how their results are implemented into practical process changes:

- fully-online models
- semi-online models
- off-line models

- literature models

Online modelsimplement beneficial change in the plattectly. Offline and literature models
contribute to process understanding, leadingn@ementation bythers. Semi-online models lie



somewhere in betweehe nextsections further define arekaminehow each type of model is 15
implemented, in order of its immediate impact in industry.

6.3 Fully-online models

Fully-online models are part of the compusgsstem controllinghe process athe plant. They
obtain their input data directfyom the system (which has accessth@ relevantsensor signals)
and make directchanges to specific contreariables, possibly undethe supervision of an
operator. Fully-online models represent the pinnacle of model implementatibwe, medel itself
implements change in the plant on a continuous basis.

For example, the spray water system on a slab castautpine is generally controlled by a fully-
online model. The model is typicallydesigned to delivethe same total amount @fater toeach
portion of the strand surface, changihg flow rate to accountor variations in the castingpeed
history experienced by each portion as it passes through the spray zones.

Another example is a breakout detect®ystem, whichpredicts whenthere is danger of a
“breakout”, (where molten steel escapes the solidifying sheldeaids overthe lower portion of

the continuous casting machine) and slows down the casting withdrawal speed to prevent this from
happening. The modelcontinuously analyzeshe temperaturesignals from thermocouples
embedded throughotihe mold andsearches for patterns, such as Ilmtal heatflux (Gilles,

1981), ormoving temperaturenversions (Iltoyama, 1988)hat are associatesith an impending
breakout.

Fully-online models must be extremely fast (to rumeal time)and robust (to produceasonable
output for anyinput condition, including signals from baénsors) These needs requitbat the

model be extremelgimple, consisting only olbgic and afew basic equationsthat have been
thoroughly tested to be reliable.

The demands for reliable accuracy are higbeonline models thaifor any other type ofmodel.

To meet this need first requires detailed knowledge and understandivay ebpect of thprocess

being controlled. If the model is designed to prevent a defect, for example, then the exact nature of
the formation of the defect must first be understood. In the case of brelgkectionsystems, for
example the relationship between thermocoupignals andhe unusual sequence of everttst
accompanies solidification prior to a sticker breakmagbeen determinethrough extensivglant

and pilot-plant experimentation (Gilles, 1981), (Itoyama, 1988).

In addition to containing an accurate qualitative understanding, the model must also be quantitative.
This generally requires extensive calibratiothat particular plant imuestion. Inthe context of

our example, the actual magnitude of the critical temperature inversion must be built mtodtle

or else the breakout detection system could generate costly false alarms (if the modehsaioe

low) or allow breakouts (if the value was too high).

Generating theknowledge needed, and refiningiitto a few simple equations, isthe most
demanding part of fully-online model developmeriortunately,the model neeanly produce
accurateresults forthe limited set of process conditions atparticular plant. Therefore, the
equations may béased on curve-fits ahe results from plant, pilot-plant, physical model, or
laboratory-scale measurements, or even sophisticatederical experiments. Optimization
methods such as neural networks provide a useful tool for this task (Middle and KBagf, In
each way, the fundamentaknowledge is incorporated into simplempirical relations and
constants.

Implementing the model into the plant requires extensive work to instathamiainsensors data
acquisition, and interfacing computer systems to link the process with the computer model. This is
a very time-consuming and expensive undertaking, sodtitisal that the model isufficiently
beneficial, accurate and robust to be worth the trouble.

Fully-online modelsdealwith control variables, by definition. These models transform an SOP
variable into a controVariable, enabling significanirocess improvementWith betterprocess



understandingmore SOPvariables can b&ansformed into controtariables, throughheuse of 16
fully-online models. Thisnablessavings in operator time, improved productivity, and product
quality by adapting faster and more consistently to charmiogess conditions. Universities can
contribute to this effort by helping to develtpe understanding and simple basic principlieat

form the heart of thesmodels. In this regardntelligent controlsystems, such ake intelligent

mold (Brimacombe1993), have great potential benefit ilmdustry, agfully-online models of the

future.
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Figure 8.3. Flow chart for the implementation of process models in industry
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6.4 Semi-online models

Semi-online models are similar to fully-onlimeodels,except that a planbperator or process
engineer interfaces between the model and the process to determine what &akien fbhis is an
important distinction in practice, which affects the nature of model implemengattbthe features
required of the model. These models are best suited to help set optimunfiole@4> variables,
which need less frequent change than control variables.

A typical semi-online model runs on a stand-alone personal computbe operator’'sdesk. For
example, in a continuous castipgocess, such model might beused toindicate the optimum
places to cut the strand during a grade change, in orageinimize the amount of intermixed steel
that must be downgraded (Thomas addang, 1994). Each time anew ladle is tappedhat
involves a gradehange,the operatoinputs the relevant currenprocess conditions angrade
specification limits for that customewmynsthe model, andnterprets the output to decidéhere to
cut the strand.

A semi-online model could also act as a tool for trouble-shooting and on-the-spot psoblerg.
For example, a fully-calibrated, 1-D heat-transfer model odrdginuous slab caster could bgsed

to determine which rolls to change or realigromer to solvecertaintypes of crackingproblems.

It does this by calculating the shell thickness as a function of distance down the Misaligned

or worn rollscan generate certatgpes of internal cracks by straining theeak solid at the
solidification front. The initiation point of theseracks,measured on a sectioned sample of the
slab, corresponds to thecation of the solidificatioriront atthe time thecrackwas formed. For
this model to be effective, it must lbalibratedfor the differentgrades and casting conditions at
that plant. In additionthe operatomust have access the metallurgicatesults and knowledge
about thecracks. More advanced semi-onlimaodels, such athe experisystem ofbillet casting
developed by Brimacombe awsdworkers (Brimacombel,993), makethis analysis evemasier,
and supply useful knowledge to solve other types of problems as well.

Sometimes, a goodyell-calibrated model can be implemented in more tbea way. For
example, the 1-D heat conduction model pistussedcould also be applied toptimize cooling
waterflow rates in thesprayzone of thecontinuous slab casting machine, in ordeathieve a
desired temperature history for the steel surface, and thereby avoid surface cracks.

Semi-online models have many attributieat are similar to fully-onlinenodels. Both must run
very quickly (a decision is often needed within a minute) armake quantitatively-accurate
predictions, thus requiringxtensive model calibration at tigant. In bothcases,the potential
benefits from the model are controlled by the extent to which the phenomena goverpracdss
are understood and properly quantified in the model.

In comparison with fully-online models, semi-online models are better suited to modeling complex
phenomena. This is becausise operator carrespond toinformation and circumstances
unforeseen by the model to make a bettmision. It is als@asierfor the operator to learn from

the semi-online model, which serves as a valuable means of technology transfer betwestelthe
developer and the plaafperator. The semi-online modelequires substantialljess effort to
implement into theplant, as lessomputer automation and interfacisgstemsare needed. It is
consequently much easier to change the model, to modify or add new knowledge and capabilities.

An important feature of semi-online models is that they must be easy to rbavend very “user-
friendly” interface withthe operator. Developing thisnterface is one of the difficutasks which
separates these models frath others. Semi-online models which prove to berthy might
eventually be implemented as fully-online models. The semi-online stage prthedegportunity
to learn about thprocessandoptimize themodel, bydeterminingall of the essentialminimum
number of input variables, in addition to refining its accuracy and robustness.



6.5 Off-line models 18

Off-line models areused by process engineers and designergh@rplant, researchgquality
control, etc.) tagain personainsights and understanding aboytracess. The modelresults are
then implemented in the plant by developingw designs or changes to standamkrating
practices. These modedse not asimmediately beneficial as onlineodels, because off-line
models at best can only help to prevent a problem from occurrimgextéme. More importantly,
model implementation relies solely on the model user.

To implement beneficialchanges,the user of an off-inemodel must have ahorough
understanding of botthe process andhe model. The model developeshould make it clear
(through the user manual) whatthe model assumptions are.  Ta@enerate theprocess
understanding, Figure 8iBustrateshow the off-line model igust one ofthe tools that can be
used. Model results are implemented in combination with the user’s personal knowlsedged
from plant, pilot-plant, physical model, afaboratory experiments, previous literature, attter
sources.

As shown in Figure8.3, the process understandirgained fromall of thesesourcescan help a
process engineer to implement positive changes in the plant.carhiselp to avoid thdangerous
short cut, alsshown in Figure8.3, of implementing changes in the plant on thasis oftrial
results without understanding the process.

Off-line models can help to providmsights in many differentways. They can correct
misconceptions about th&rocess, byquantifying phenomenésuch asinternal temperature and
flow patterns) whichthe processengineethasnever seen omeasured. The model caralso be

used for hypothesis testing, Iputting numbers on a hand waving argumekbr example, a
gualitative mechanism may Iseggested texplain someobservedevent in theplant. A process
model could quantify thenechanism, whicltan then be reevaluatéhsed on howlosely the

model results match the expected behavior.

Generally, the next stage of implementation is tiesign plant trials to test the expected
improvements. Off-line models can help in thigerimentabdlesign. They aremost useful when
the plant trials arerery expensive. This isertainly the cas&hen developing anew process.
Tracking the effect of a process change on the incidence of a defect in an gxistiegsmay also
be expensive. This isecause it is usually impossible to control plant experimentswelly so
the results are statisticalwhich demands long trials before a conclusican be madewith
confidence. Off-line models are also important to understanding the results of plant trials.

Another stage of implementation is finding the “optimwwédy to runthe process to saveoney.
Parametric studies or “numerical experiments” with an off-line model can play an important role in
this regard. For exampléhe model of intermixingluring a grade changgiscussed previously

could be used off-line to investigate how to minimize the amount of downgraded steel created. The
process engineer could learn tmnningthe model thatiraining thetundish to a lowevel before
opening theladle and decreasing the castisgeed duringhe grade changeould shorten the
downgraded length. Furthamvestigationwould be required taletermine if theslowdown in
production to save this amount @éwngrading is cost effective. If beneficithe new practice

could be implemented in the plant through changes in the standard operating practice.

Off-line models should be easy to use, leaving time for the user to pursue insights using other tools
and toimplement theresults. Rapid turn-aroundime between modetuns is alsamportant to

attain the immediacy needed tmderstandthe behavior of thenodel. Although commercial
packages are theost popular framework fooffline models,they only barely satisfy these
requirements. If a processodel is too difficult touse, itmay be easier to obtain the needed
knowledge another way, such as through experiments, or even trial and error in the plant.

To help implement changes, off-line models must be able to simulate process situations outside the
scope of prior experienceThus, the modelshould be asnechanistic apossible, withits roots
grounded solidly in fundamental principles, as illustrated in Figure 8.3. Properly incorporating the
phenomena which goverthat aspect of th@rocessbeing modeled, allowghe model to make
reasonable predictionfer new conditions. Thisnables implementation afew designs and



radical changes in operatingonditions. It alsomakes model validation and calibration with 19
experiments easier.

Unfortunately, the same sophistication that enables off-line advances in understanding also tends to
complicate and slow down the model. This makes the model difficult to use online. Sometimes, a
simplified version of an off-line model can be developed for online use later.

6.6 Literature models

Literature models are defined here as off-line moddleh areused only bythe person(s) who
developed the model. Furthermore, the modeller hadirect contactvith the process, (working
generally in a University or researehvironment). The only directway for these models to be
implemented (if they are implemented at all!) is by someone else using the reported results.

At their best, literature models cant asoff-line models, possibly saving a procesyineertime
in developing and running a vecpmplexmodel. Moreoverthe literature model caafford the
luxury of long computingimes, (even a week on a supercomputer)nsay include more of the
phenomena which govern the process.

Like the off-line model, the knowledge and insightgained by theprocessengineer are more
important than the moddiself. It is therefore important thatonclusions fromthe model be
communicated clearly. The more practical and specifitnights,the easiefor implementation.
It is perfectly reasonable to combine the modeliagults with experimentalresults, physical
models, and plant data, perhaps found in existing literafline. aim is topresent agomplete an
understanding as possible to the person reading the paper. Ideally, the processamysesech
the literature, to learhow to solve hispecific problem, andmplement acourse ofaction in the
plant, in a similar manner to a doctor diagnosing and treating a patient.

Because the modeller anderare the samperson,significant short-cuts in developinte user
interface of the model are permitted. €iurse, thisusually makes the model too complex and
“user-vicious” for anyone else but the modeller to run.

A key attribute of the literature modeltisat there is napportunity forthe processengineer to
rerun the model. All of the parametric studies must be done by the oagihalr. Forthe results
to be implemented, it is important that the modeller make reascasgenptions regarding both
the phenomena included in theodel, andhe input conditions adopted parametricstudies. To
do this, the modeller must obtain a good understanding of the process.

The implementation value of a modelless when itmerely echoe&nowledge alreadknown
throughplant experience or otheneans. ltvalue is negativavhen it contradicts some athat
knowledge and fails to explaiwhy. Particularlyfor well-establishegrocessesthere is a great
deal ofknowledge already iexistence. To ensure a positive contributionntdustry, this prior
knowledge should beaken into account. Well-studied processesgenerally require more
sophisticated models to contribute new knowledge than early models of a new process.

To be useful to industrythe resultsarebest presented ithe form recommended biderbertson
(1993) in FigureB.4. Inthis figure,“you” refers tothe process engineer, so idealtile y axis
shouldrelate tosome aspect of quality groductivity. The x axis shouldcontain adesign or
operating variable which can be changed in the plant.

The modeller should avoid presenting results in termistefmediatevariables, whichare difficult
to control, orevenmeasure, in practiceFor example, it iatural touse amodel to find the
desiredheatflux or heattransfer coefficient needed &ptimize some aspect of a givgmrocess.
This is not as useful as specifyitige actuafluid flow rate needed to achievkis heattransfer
condition for the specific process under consideration.
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Something you care about

Something you can do something about

Figure 8.4. Graph containing results which can be implemented

The quality of presentation of the results is independent from their accuracy. Puteakinbsses

of a model should be identified, in addition to its strong points. It is also useful to powheut

the resultsare known to form upper or lower bounds the truebehavior. Toincrease the
credibility of the entire modeling community, it is the responsibility of each modeller to continually
strive foraccurate modelingonclusions, by understanditige process ofinterest and validating

the model.

7. SUMMARY

The rapid development of computeardware and software ovénree decadesas made the
mathematical model key component iprocess development. Thohapterhas presented some
guidelines for the development and implementation of process models.

A successfulmodel must have gurpose, whichdictates how choices are madeluring its
development. Reasons to model include increasing process understanding, helping with the design
of experimentsevaluation of experimentaiesults, scale-upquantifying property measurement,

online process control and optimization, and technology transfer.

Modeling must be accompanied by careful measurememsemted, whetheéhey be made on an
operating industriaprocess, ailot plant, a physical model, or laboratory apparatus. The

processmodel must be viewed as one tbe manytools of the process engineer, which also
includes previous literature and experience.

Models are implementedhenthey lead to beneficiathanges to planbperation. This is most
likely whenthe model is explicitly targeted anderstanding howparticulardesign, process, or
control parameters can be changed to affect specific quality or produetarigbles. Models
range in complexity from simplempirical models, suited for online implementation, to
sophisticated mechanistic models, which can be used for in-depth offline analysis.

When properly formulategorocess modelsan yieldinsights to process behavitivat cannot be
fathomed by othemeans,and lead to significanfprocess improvements. However, when key
phenomena aregnored, or predictions are carelesslgnalyzed, great harncan be done.



Successfulmodeling requires understanding of bdhe industrialprocess andhe computer 21
model. The processengineerhasthe responsibility tcensurethat aprocessmodel adequately
represents a system and interprets the results appropriately.
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